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Abstract. In this article we studied some spectral properties for the paranormal operator which 
is densely defined closed operator. This type of operator can be represents as a matrix 
representation, by using this representation we can study the Weyl’s types theorems and 
Browder’s theorem. In addition, under sufficient and necessary conditions the paper explain 
that the essential spectrum, the Weyl’s spectrum, and the Browder’s spectrum of such an 
operator matrix corresponds to the union of the essential spectrum, the Weyl spectrum and the 
Browder’s spectrum of its diagonal elements. 
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1. Introduction 

   In 1909, H. Weyl tasted the spectrum of all compact perturbations of self-adjoint operators 
in Hilbert space and found that their intersections consisted of points in a spectrum of finite 
multiplicity that were not isolated eigenvalues. The bounded linear operators that satisfy this 
property are said to satisfy Weyl's theorem [1].  Subsequently, Berkani and Weyl introduced 
some variants of Weyl’s theorem, this study is commonly known as the Weyl type’s theories 
including the   a-Weyl’s theorem. In 2004, researchers presented the Browder’s theorem and 
a-Browder theorem as generalizations of a-Weyl’s theorem [2]. Some spectrum properties has 
been studied for classes of operators that are bounded (see [3], [4]). 

   One of the most important and well-studied classes in operator theory is that of Normal 
operators. Let 𝑁 (𝐻) = {𝑆: 𝐻 → 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙},the spectrum theorem for 𝑆 ∈

𝑁 (𝐻) guarantees the existence of non-trivial invariant subspaces and also reveals the complete 
structure of operators. Normal operators thus lead to several generalizations and one of these 
generalizations is the class of paranormal operators. The class of finite paranormal operators 
was first studied by Istrătescu [5]. Furthermore, Furuta [6] introduced the term paranormal 
operator. Limited paranormal operators have been studied by many authors. For example: [7, 
8].  

  Weyl's theorem and the self-adjointness of the Riesz projection with respect to the separated 
spectral values of the operators have been studied for many different classes of operators. This 
was established by his Coburn [9] for some non-regular operators (non-regular operators and 
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Toeplitz operators). In addition, Uchiyama [8] used Ando's characterization [10] for 
paranormal operators and extended it to boundary paranormal operators. However, Ando's 
characterization is not available for Bounded Paranormal Operators, so Bounded Operator 
techniques will not work in this case. 

   In this paper we are using the densely defined closed paranormal operators in infinite 
dimensional Hilbert space Η and prove some Weyl’s type theorems and Browder’s theorems. 
Also we proves that these operators are obeys some spectral properties. 

2. Notation and Preliminaries  

In this section, we recall the following concepts, which are used later. 

   All through this work, Η, Η , Η  denotes to infinite dimensional complex Hilbert spaces, 
𝐶(Η) is the set of all closed linear operators defined on Η. For an operator  S ∈ 𝐶(Η), we 
define 𝑁(𝑆) as the kernel of 𝑆, while  𝐷(𝑆)  represents the domain, and 𝑅(𝑆) denotes the range 
of S. The upper semi Fredholm operator is define if 𝑅(𝑆) is closed and 𝑛(𝑆) = dim 𝑁(𝑆) is 
finite while we say that 𝑆 is lower semi Fredholm operator if 𝑑(𝑆) =  𝑐𝑜𝑑𝑖𝑚 𝑅(𝑆) =

dim(𝑁(𝑆) ) is finite. A Fredholm operator is upper and lower semi Fredholm operator.  

𝑆𝐹 (Η) = {𝑆 ∈ 𝐶(Η): 𝑆 𝑖𝑠 𝑢𝑝𝑝𝑒𝑟 𝑠𝑒𝑚𝑖 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚}, 

S𝐹 (Η) = {𝑆 ∈ 𝐶(Η): 𝑆 𝑖𝑠 𝑙𝑜𝑤𝑒𝑟 𝑠𝑒𝑚𝑖 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚}. 

The index of 𝑆 is defined as ind (𝑆) = 𝑛(𝑆) − 𝑑(𝑆). 

  An operator 𝑆 ∈ 𝐶(Η) which is Fredholm operator of index 0 is defined as Weyl operator, 
while 𝜎 (𝑆) = {𝜂 ∈ ℂ :  𝑆 −  𝜂𝐼 is not weyl} is used to define the Weyl spectrum of 𝑆. In 
addition we can assign the following notations: 

𝑆𝐹 (Η) = {𝑆 ∈ 𝐶(Η):  𝑆 ∈ 𝑆𝐹 (Η), 𝑖𝑛𝑑(𝑆) ≤ 0 } 

𝑆𝐹 (Η) = {𝑆 ∈ 𝐶(Η): 𝑆 ∈ 𝑆𝐹 (Η), 𝑖𝑛𝑑 (𝑆) ≥ 0} 

In [3], Berkani generalized the concept of Fredholm operators to B-Fredholm operators as 
follows 

𝛺(𝑆) = 𝑖 ∈ ℕ: ∀𝑗 ∈ ℕ, 𝑗 ≥ 𝑖 ⇒ 𝑅 𝑆 ∩ 𝑁(𝑆) ⊆ 𝑅 𝑆 ∩ 𝑁(𝑆)  

The degree of stable iteration of 𝑆 is denoted by 𝑑𝑖𝑠(𝑆) and defined by 𝑑𝑖𝑠(𝑆) = 𝑖𝑛𝑓 𝛺(𝑆) and 
𝑑𝑖𝑠(𝑆) = ∞ when 𝛺(𝑆) = ∅. 

Furthermore, for 𝑆 ∈ 𝐶(Η) the 𝐵 −  𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 operator is upper and lower semi 𝐵 −

𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 operator, where 𝑆 is upper (resp.,lower) semi 𝐵 −  𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 operator if ∃ 𝑑 ∈

𝛺(𝑆):  dim{𝑁(𝑆) ∩ 𝑅(𝑆 )} is finite and 𝑅(𝑆 ) closed and (resp., 𝑐𝑜𝑑𝑖𝑚 {𝑅(𝑆) + 𝑁(𝑆 )} is 
finite), and the index of 𝑆 is 
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 ind(𝑆) = 𝑑𝑖𝑚{𝑁(𝑆) ∩ 𝑅(𝑆 )} − 𝑐𝑜𝑑𝑖𝑚{𝑅(𝑆) + 𝑁(𝑆 )}.   

We call 𝑆 ∈ 𝐶(Η) as 𝐵 − 𝑊eyl if it’s 𝐵- Fredholm operator with 𝑖𝑛𝑑𝑒𝑥 0 and 𝜎 (𝑆) is used 
to symbolize the 𝐵-𝑊eyl spectrum of 𝑆 and defined by 𝜎  (𝑆) = {𝜂 ∈ C ∶ 𝑆 − 𝜂 I is not 𝐵-
weyl }. 

Moreover, the ascent asc(𝑆) and descent dsc(𝑆) for 𝑆 ∈ 𝐶(Η) are defined as: 

asc(𝑆) = inf {𝑑: 𝑁(𝑆 ) = 𝑁(𝑆 )}

dsc(𝑆) = inf {𝑑: 𝑅(𝑆 ) = 𝑅(𝑆 )}
 

An operator 𝑆 ∈ 𝐶(Η) is called Browder if it’s both upper and lower semi Browder, where 
𝑆 ∈ 𝐶(Η) is upper semi- Browder if asc(𝑆) < ∞ with 𝑆 is upper semi- Fredholm and it is 
lower semi-Browder if dsc(𝑆) < ∞ with 𝑆 is lower semi – Fredholm. 

Now, we can define the following spectrum for an operator 𝑆 as: 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not upper semi Fredholm}, 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not lower semi Fredholm}, 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not Fredholm}, 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I ∉  𝑆𝐹 (Η)}, 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not upper semi-Browder }, 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not lower Semi-Browder} and 

𝜎 (𝑆) = {𝜂 ∈ ℂ: 𝑆 − 𝜂I not Browder }, respectively. 

Evidently 

𝜎 (𝑆) ⊂ 𝜎 (𝑆) ⊂ 𝜎 (𝑆) = 𝜎 (𝑆) ∪ acc 𝜎(𝑆), 

where acc 𝜎(𝑆) denotes the set of accumulation points of the spectrum 𝜎(𝑆) of 𝑆.  

Recall that one says that 𝑆 obeys Weyl's theorem if 

𝜎(𝑆) ∖ 𝜎 (𝑆) = 𝐸 (𝑆), 

where 𝐸 (𝑆) is the set of isolated points of 𝜎(𝑆) which are eigenvalues of finite multiplicity, 
and that one says that 𝑆 obeys Browder's theorem if 𝜎 (𝑆) = 𝜎 (𝑆), or  

 𝜎(𝑆)\𝜎 (𝑆) = Π (𝑆) 

Where  
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𝛱(𝑆) = {𝜂 ∈ 𝑖𝑠𝑜 𝜎(𝑆): 0 < 𝑎𝑠𝑐(𝑆 − 𝜂𝐼) = 𝑑𝑠𝑐(𝑆 − 𝜂𝐼) < ∞} 

Π (𝑆) = {𝜂 ∈ Π(𝑆): 𝑛(𝑆 − 𝜂𝐼) < ∞}. 

We say that 𝑆 obeys a-Weyl's theorem if 

𝜎 (𝑆) ∖ 𝜎 (𝑆) = 𝐸 (𝑆), 

where 𝐸 (𝑆)is the set of isolated points of 𝜎 (𝑆) which are eigenvalues of finite multiplicity, 
and that 𝑆 obeys a-Browder's theorem if 𝜎 (𝑆) = 𝜎 (𝑆). 

Remark 2.1. If 𝑆 ∈ 𝒞(Η , Η ) and 𝑁(𝑆) = {0}, then the inverse operator, 𝑆  is the linear 
operator from Η  to Η , with 𝐷(𝑆 ) = 𝑅(𝑆) and 𝑆 (𝑆𝑥) = 𝑥 for all 𝑥 ∈ 𝐷(𝑆). In particular 
if 𝑆 ∈ 𝒞(Η) is densely defined and bijective, then by the closed graph theorem it follows that 
𝑆 ∈ ℬ(𝐻) where ℬ(𝐻) is the set of bounded linear operator defined on Η (See [11]). 

Remark 2.2. (See [12]) Suppose that closed operator 𝑆 is a Fredholm operator and K is S-
compact. Then 𝑆 + 𝐾 is a Fredholm operator and  ind (𝑆 + 𝐾) = ind (𝑆). 

Definition 2.3. (See [13]) Let 𝑆 ∈ 𝒞(H) with 𝜎(𝑆) = 𝜎 ∪ 𝜏, where 𝜎 is contained in some 

bounded domain Ω such that Ω‾ ∩ 𝜏 = ∅. Let Λ be the boundary of Ω, then 

ℜ = ∫   (𝑧𝐼 − 𝑆) 𝑑𝑧,                                                    (2.1) 

is called the Riesz projection with respect to 𝜎. 

Theorem 2.4. [14, Theorem 2.1, Page 326] Suppose 𝑆 ∈ 𝒞(𝐻) with (𝑇) = 𝜎 ∪ 𝜍, where 𝜎 is 
contained in some bounded domain Ω and ℜ  is the operator defined in Equation 2.1. Then 

1. ℜ  is a projection. 
2.  The subspace 𝑅(ℜ ) and 𝑁(ℜ ) are invariant under 𝑆. 
3.  The subspace 𝑅(ℜ ) is contained in 𝐷(S) and 𝑆| (ℜ ) is bounded. 

4.  𝜎 𝑆| (ℜ ) = 𝜎 and 𝜎 𝑆| (ℜ ) = 𝜍. 

In particular, if 𝜂 ∈ 𝑖𝑠𝑜 𝜎(𝑇), then there exist a positive real number 𝑟 such that {𝑧 ∈ ℂ: |𝑧 −

𝜂| ≤ 𝑟} ∩ 𝜎(𝑆) = {𝜂}. If we take Λ to be the boundary of {𝑧 ∈ ℂ: |𝑧 − 𝜂| ≤ 𝑟}, then the Riesz 
projection with respect to 𝜂 is defined as 

ℜ = ∫   (𝑧𝐼 − 𝑆) 𝑑𝑧                                                    (2.2) 

Definition 2.5. [7, Definition 1.1] An operator 𝑆 ∈ ℒ(𝐻) is called paranormal operator if 

∥ 𝑆𝑥 ∥ ≤ ∥∥𝑆 𝑥∥∥ ∥ 𝑥 ∥, ∀𝑥 ∈ 𝐷(𝑆 ).                     (2.3) 
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Equivalently, 𝑆 is paranormal, if ∥ 𝑆𝑥 ∥ ≤ ∥∥𝑆 𝑥∥∥, ∀𝑥 ∈ 𝑆 . 

If 𝑆 ∈ ℬ(H), then Equation 2.3 holds for every 𝑥 ∈ H. 

It is well known that spectrum of a densely defined closed normal operator is non-empty. The 
following theorem proves this result for the class of paranormal operators. 

Theorem 2.6. [16, Theorem 4.2, Page 12] If 𝑆 ∈ 𝒞(H) be a densely paranormal operator, then 
𝜎(𝑆) ≠ ∅. 

It was shown by Istrătescu-Saito-Yoshino [5] that a paranormal operator whose spectrum is 
contained in the unit circle is always unitary operator. Also it is well-known that the inverse 
operator of an invertible paranormal operator is always paranormal. The following lemma 
shows that every isolated point in spectrum of paranormal operator 𝑆 is eigenvalue. 

Lemma 2.7. [15, Proposition 3.7, Page 8] Let 𝑆 be a paranormal operator and 𝜂 ∈

iso 𝜎(𝑆).Then the Riesz idempotent ℜ with respect to  𝜂 defined by (2.2) satisfies ran ℜ =

dim(𝑁 (𝑆 −  𝜂)). Hence,  𝜂 is an eigenvalue of 𝑆. 

Corollary 2.8. [15, Proposition 3.9, Page 8] Let 𝑆 be as defined in Lemma 2.4 and 𝜂 ∈ 𝑖𝑠𝑜 𝜎(𝑆). 
Then 𝑁(ℜ ) = 𝑅(𝑆 − 𝜂𝐼). 

The next lemma gives a characterization of closed range paranormal operators. 
Lemma 2.8. [15, Proposition 3.10, Page 9] Suppose 𝑆 ∈ 𝒞(H) is a densely defined paranormal 
operator. If 0 ∈ 𝑖𝑠𝑜 𝜎(𝑆), then 𝑅(𝑆) is closed. 

3. WEYL’S TYPES THEOREMS AND BROWDE’S THEOREM FOR 
UNBOUNDED PARANORMAL OPERATOR. 

   In this section we show that a densely defined closed paranormal operator 𝑇 satisfy a-Weyl's 
theorem, Browder’s theorem, Generalized Weyl’s theorem, Generalized Browder’s theorem, 
Property (b), Property (gw) and Property (gb). 

 For 𝑆 ∈ 𝒞(𝐻), where 𝐻 = 𝐻 ⊕ H  then 𝑆 has the block matrix representation 

𝑆 =
𝑆 𝑆
𝑆 𝑆

,                                                 (3.1) 

where 𝑆 : 𝐷(𝑆) ∩ 𝐻 → 𝐻  is defined by 𝑆 = 𝑃 𝑆𝑃
( )∩

 for 𝑖, 𝑗 = 1,2. Here 𝑃  is an 

orthogonal projection onto 𝐻 . 

For (𝑥 , 𝑥 ) ∈ (𝐻 ∩ 𝐷(𝑆)) ⊕ (𝐻 ∩ 𝐷(𝑆)), 

𝑆(𝑥 , 𝑥 ) = (𝑆 𝑥 + 𝑆 𝑥 , 𝑆 𝑥 + 𝑆 𝑥 ). 
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Note that if 𝑆 is densely defined then 𝑇  is densely defined for 𝑖, 𝑗 = 1,2, that is 𝐷 𝑆 ∩ 𝐻 =

𝐻  for all 𝑖, 𝑗 = 1,2. See [15] 

Remark 3.1. [15] Let 𝑆 be as defined in Equation 3.1. If 𝐻 = 𝑁(𝑆) ≠ {0} and 𝐻 = 𝑁(𝑆) , 
then 

𝑆 =
0 𝑆
0 𝑆

                                                     (3.2) 

1. If 𝑆 is densely defined closed operator then 𝑆  is also densely defined closed operator. 
2. It can be easily checked that 𝑅(𝑆 ) = 𝑅(𝑆) ∩ 𝑁(𝑆) . If 𝑅(𝑆) is closed, then 𝑅(𝑆 ) 
is closed. 

   In [9] and [8], Coburn and Uchiyama proved that any bounded hyponormal, Toeplitz and 
paranormal operator satisfies the Weyl's theorem. In [15] Bala and Ramish Prove this theorem 
for unbounded paranormal operators. Here we are going to prove more types of Weyl’s 
theorems, Browder’s theorem and some spectral properties for densely defined Paranormal 
operator. 

Theorem 3.2. If 𝑆 ∈ 𝐶(𝐻) is densely defined Paranormal operator. Then 𝑆 satisfy a-Weyl's 
theorem. 

Proof. Let 𝜂 ∈ 𝜎 (𝑆)\𝜎 (𝑆). So, 𝑅(𝑆 − 𝜂𝐼) is closed and 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) ⩽ 0. If 𝑖𝑛𝑑(𝑆 −

𝜂𝐼) < 0 then 𝑆 − 𝜂𝐼 can’t be decomposed as a matrix representation in Equation 3.2. 
Assume 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) = 0, then 𝑁(𝑆 − 𝜂𝐼) > 0 since if 𝑁(𝑆 − 𝜂𝐼) = 𝑁(𝑆 − 𝜂𝐼)∗ = {0} then 
𝑆 − 𝜂𝐼 has bounded inverse thus 𝜂 ∉ 𝜎(𝑆) which is controduction. Then 𝑆 − 𝜂𝐼 can be 
decomposed on 𝐻 = 𝐻 = 𝑁(S − 𝜂𝐼) ⊕ 𝐻 = 𝑁(𝑆 − 𝜂𝐼)∗ as 

𝑆 − 𝜂𝐼 =
0 𝑆
0 𝑆 − 𝜂𝐼

 

by remark 3.1 , 𝑆 − 𝜂𝐼 is densely defined operator with 𝑅(𝑆 − 𝜂𝐼)  is closed. 
Since 𝑁(S − 𝜂𝐼) is finite dimensional subspace then, 𝑆  is finite rank operator, so we have 

 ind(𝑆 − 𝜂𝐼) =  ind(𝑆 − 𝜂𝐼) = 0 

Since 𝑁(𝑆 − 𝜂𝐼)∗ = 0, then 𝑅(𝑆 − 𝜂𝐼) = 𝑁(𝑆 − 𝜂𝐼) thus 𝜂 ∉ 𝜎(𝑆 ). It's easy to see 
𝜎(𝑆) ⊆ 𝜎(𝑆 ) ∪ {𝜂}, so 𝜂 is an isolated point of 𝜎 (𝑆) hence,  𝜂 ∈ 𝐸 (𝑆). 

Conversely, assume 𝜂 ∈ 𝐸 (𝑆), then 𝜂 is isolated approximate value, with 0 < dim (𝑁(𝑆 −

𝜂𝐼)) < ∞. It remains to prove 𝑅(𝑆 − 𝜂𝐼) is closed. Consider the general Riez projection ℜ 
with respect to 𝜂 defined in Equation 2.2. By theorem 2.5 and corollary 2.8. we have 
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𝑅(𝑆 − 𝜂𝐼)  = 𝑅 (𝑆 − 𝜂𝐼)| ℜ 

 = 𝑁(ℜ ).
 

Thus, 𝑅(𝑆 − 𝜂𝐼)| ℜ  is closed so is 𝑅(𝑆 − 𝜂𝐼). This proves our theorem. 

Theorem 3.3. If 𝑆 ∈ 𝐶(H) be densely defined paranormal operator then 𝜎(𝑆)\𝜎 (𝑆) ⊆ 𝐸(𝑆).. 
Where 𝐸(𝑆) = {𝜂 ∈ 𝑖𝑠𝑜 𝜎(𝑆): 0 < 𝑛(𝑆 − 𝜂𝐼)} 

Proof. Let 𝜂 ∈ 𝜎(𝑆)\𝜎 (𝑆). So we have 𝑛(𝑆 − 𝜂𝐼) = 𝑑(𝑆 − 𝜂𝐼) < ∞ and 𝑅(𝑆 − 𝜂𝐼) is closed. 
By remark 3.1 𝑆 − 𝜂𝐼 can be written as 

𝑆 − 𝜂𝐼 =
0 𝑆
0 𝑆 − 𝜂𝐼

 

with 𝐻 = 𝐻 ⊕ 𝐻  where 𝐻 = 𝑁(𝑆 − 𝜂𝐼), 𝐻 = 𝑁(𝑆 − 𝜂𝐼)  

Hence 𝑆 − 𝜂𝐼 is densely define operator with 𝑅(𝑆 − 𝜂𝐼) is closed. 

Moreover, since 𝑆  is finite rank operator then 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) = 𝑖𝑛𝑑(𝑆 − 𝜂𝐼). 

Since 𝑁(𝑆 − 𝜂𝐼) = {0} by corollary 2.1 𝑆 − 𝜂𝐼 is an invertible operator on 𝑅(𝑆 − 𝜂𝐼), 
hence 𝜂 ∉ 𝜎(𝑆 ) thus 𝜎(𝑆) ⊆ {𝜂} ∪ 𝜎(𝑆 ) S. 𝜂 is an isolated point of spectrum. 

Lemma 3.4. If 𝑆 ∈ 𝐶(H) is densely defined operator then the following holds 

1. 𝑆 is upper B-Fredholm operator  with 𝑛(𝑆) < ∞ if and only if 𝑆 is upper semi Fredholm 
operator. 
2. 𝑆 is lower B-Fredholm operator with 𝑑(𝑆) < ∞ if and only if 𝑆 is lower semi Fredholm 
operator. 

Proof. The proof is similar to the bounded case. 

Corollary 3.5. Let 𝑆 ∈ 𝐶(H) be a densely defined paranormal operator with 𝑎𝑠𝑐(𝑆 − 𝜂𝐼) < ∞ 
then 𝑆 satisfies 

1 Generalized Weyl theorem. 

2 Generalized Browder's theorem. 

3  Property (gw). 

4 Property (gb). 

Theorem 3.6. If 𝑆 ∈ 𝐶(H) is densely defined paranormal operator. Then 𝑆 satisfies Browder's 
theorem. 

Proof. Let 𝜂 ∈ 𝜎(𝑆)\𝜎 (𝑆), then 𝑛(𝑆 − 𝜂𝐼) = 𝑑(𝑆 − 𝜂𝐼) < ∞ with 𝑅(𝑆 − 𝜂𝐼) is closed. 
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Then 𝑆 − 𝜂𝐼 can be written as matrix representation shown in remark 3.1 as 

𝑆 − 𝜂𝐼 =
0 𝑆
0 𝑆 − 𝜂𝐼

 

By remark 2.1 and since 𝑆  is compact operator then 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) = 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) = 0 

Since 𝑁(𝑆 − 𝜂𝐼) = {0} then 𝑆 − 𝜂𝐼 is invertible operator on 𝑅(𝑆 − 𝜂𝐼), hence 𝜂 ∉

𝜎(𝑆 ). Then 𝜎(𝑆) ⊆ {𝜂} ∪ 𝜎(𝑆 ),  𝜂 is isolated point in 𝜎(𝑆). 

Since 𝑆 is paranormal operator, then 𝑆 has SVEP at 𝜂. and by 𝑆 − 𝜂𝐼 is Weyl operator  asc (𝑆 −

𝑥𝐼) < ∞ (See [ 16, theorem 3.8]). Now, by remark 3.4 (iv) of [16] we get 𝑎𝑠𝑐(𝑆 − 𝜂𝐼) =

𝑑𝑠𝑐(𝑆 − 𝜂𝐼) < ∞. Hence 𝜂 ∈ ∏ (𝑆). 

For the other inclusion, let 𝜂 ∈ ∏∘(𝑆), then we get 𝑛(𝑆 − 𝜂𝐼) < ∞. Consider the Riez 
Projection ℜ  which defined in Equation 2.2. Hence, 

𝑅(𝑆 − 𝜂𝐼) = 𝑁 ℜ , 𝜂 ∉ 𝜎 𝑆| ℜ  

which implies 𝑅(𝑆 − 𝜂𝐼) is closed and (𝑆 − 𝜂𝐼)| ℜ ∈ 𝐵(𝐼), thus 

𝑛(𝑆 − 𝜂𝐼)∗  = 𝑑(𝑆 − 𝜂𝐼)

 = dim 𝑁 ℜ

 = dim 𝑅 ℜ

 = 𝑛(𝑆 − 𝜂𝐼)

 

Hence, 𝑆 − 𝜂𝐼 is Weyl’s operator. Thus 𝜂 ∉ 𝜎 (𝑆). The proof is complete. 

Corollary 3.7. Let 𝑆 ∈ 𝐶(H) be a densely defined paranormal operator then 𝑆 satisfies Weyl's 
theorem if and only if 𝑆 satisfies Browder's theorem. 

 
Theorem 3.8. Let 𝑆 ∈ 𝐶(H) be a densely defined paranormal operator then 𝑆 obeys property 
(b).  

Proof. Let 𝜂 ∈ 𝜎 (𝑆)\𝜎 (𝑆). Assume 𝑖𝑛𝑑(𝑆 − 𝜂𝐼) = 0, then dim (𝑁(𝑆 − 𝜂𝐼)) =

dim (𝑁(𝑆 − 𝜂𝐼)∗) < ∞ with 𝑅(𝑆 − 𝜂𝐼) is closed. We can decomposed 𝑆 − 𝜂𝐼 as 

S − 𝜂𝐼 =
0 𝑆
0 𝑆 − 𝜂𝐼

 

on 𝐻 = 𝐻 ⊕ 𝐻 . 
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since 𝑆 − 𝜂𝐼 is invertible bounded operator then 𝜂 ∉ 𝜎(𝑆 ). Thus 𝜎(𝑆) ⊆ {𝜂} ∪ 𝜎(𝑆 ), 
hence 𝜂 ∈  𝑖𝑠𝑜 𝜎(𝑆). 

Since 𝑆 is paranomal and 𝑆 − 𝜂𝐼 is Semi Fredholm operator then asc(𝑆 − η𝐼) < ∞ (See [16, 
theorem 3.8]), by [16, theorem 3.4 (iv)] we get 𝜂 ∈ ∏ (𝑆) 

Conversely, let 𝜂 ∈ ∏ (𝑆), by using Riez projection operator ℜ on 𝜂 we have 

 𝑑𝑖𝑚(𝑁(𝑆 − 𝜂𝐼)∗  = 𝑑𝑖𝑚 (ℜ )∗ = 𝑑𝑖𝑚 (𝑁(𝑆 − 𝜂𝐼) 

Hence,  𝑅(𝑆 − 𝜂𝐼) is closed. 

Remark 3.9. Let 𝑆 ∈ 𝐶(H) be a densely defined paranormal operator defined as in remark 3.1 
such that  

S =
0 𝑆
0 𝑆

 

If 𝑆  is closable operator then by [12] and [17], we get the following: 

1. 𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑆) ∪ 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗)∗  

 where 𝜎 (⋅) = 𝜂 ∈ 𝜎 (⋅): 𝑛(⋅ −𝜂𝐼) = ∞  and 𝜎 (⋅)∗ = 𝜂 ∈ ℂ: 𝜂 ∈ 𝜎 (⋅)
 

2.  

𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑆) ∪ 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗)∗ ∪ 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗)∗  

where 𝜎 (⋅) = 𝜂 ∈ 𝜎 (⋅): 𝜂(⋅ −𝜂𝐼) > 𝑑(⋅ −𝜂𝐼) . 

3.  
𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑇) ∪ 𝜎 (𝑆 ) 

where 𝜎asc (⋅) = {𝜂 ∈ ℂ: asc (⋅ −𝜂𝐼) = ∞} 

4.  

𝜎 (𝑆) = 𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) 

if and only if 

𝜎asc (𝑆 ) ⊂ 𝜎 (𝑆). 

In particular, if 𝜎asc (𝑆 ) = ∅, then 𝜎 (𝑆) = 𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ). 

5.  
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𝜎⋆(𝑆) = −𝜎⋆(𝑆 ∗) ∪ 𝜎⋆(𝑆 ), 

where 𝜎⋆ ∈ {𝜎 , 𝜎 , 𝜎 }. 

6.  

𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑆) 

if and only if 

𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗) ⊆ 𝜎 (𝑆)

 and 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗) ⊆ 𝜎 (𝑆),

𝜎 (𝑆 ∗) ∩ 𝜎 (𝑆 ) ⊆ 𝜎 (𝑆).

 

In particular, if 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ) = ∅ and 𝜎 (𝑆 ) ∩ 𝜎 (𝑆 ∗) = ∅, 𝜎 (𝑆 ∗) ∩

𝜎 (𝑆 ) = ∅, then 𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑆). 

 

7.  
𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) = 𝜎 (𝑆) 

if and only if 

𝜎 (𝑆 ) ⊆ 𝜎 (𝑆)

 and 𝜎 (𝑆 ∗) ∩ 𝜎 (𝑆 ) ⊆ 𝜎 (𝑆).
 

In particular, if 𝜎 (𝑆 ) = ∅ and 𝜎 (𝑆 ∗) ∩ 𝜎 (𝑆 ) = ∅, then 𝜎 (𝑆 ) ∪ 𝜎 (𝑆 ) =

𝜎 (𝑆). 

8.  

−𝜎∗(𝑆 ∗) ∪ 𝜎∗(𝑆 ) = 𝜎∗(𝑆), 

where 𝜎⋆ ∈ 𝜎 , 𝜎 . 
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