Volume 39 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
Haizhou LU, Xuan LUO, Tao CHEN, Zhao LIU, Chao YANG. Recent progress of 4D printing technology[J]. Journal of Aeronautical Materials, 2019, 39(2): 1-9. doi: 10.11868/j.issn.1005-5053.2018.000041
Citation: Haizhou LU, Xuan LUO, Tao CHEN, Zhao LIU, Chao YANG. Recent progress of 4D printing technology[J]. Journal of Aeronautical Materials, 2019, 39(2): 1-9. 10.11868/j.issn.1005-5053.2018.000041

Recent progress of 4D printing technology

doi: 10.11868/j.issn.1005-5053.2018.000041
  • Received Date: 2018-04-12
  • Rev Recd Date: 2018-06-25
  • Publish Date: 2019-04-01
  • 4D Printing technology can achieve additive manufacturing of smart materials. Recent progresses of 4D printing composite materials, shape memory polymers, shape memory alloys and other smart materials were reviewed. 4D printing technology is developing towards multi-material precise compounding, fast response and functional forming materials recently. 4D printing technology of shape memory polymers is developing towards shape controllable and accurate movement. 4D printing technology of shape memory alloys is developing towards precise control of phase transition behavior and deformation controllable. Several considerations about 4D printing shape memory alloys were proposed based on unsolved problems, such as: the factors should be considered for obtaining near-full dense 4D printed shape memory alloys, effect of voids on its comprehensive properties, regulation of structure and properties, and deformation control, etc. Overall, with the development of new materials, forming methods, control software and machine accuracy, 4D printing technology is developed rapidly, and is gradually moving towards intellectualization, accuracy and efficiency.

     

  • loading
  • [1] TIBBITS S, MCKNELLY C, OLGUIN C, et al. 4D printing and universal transformation[C]∥Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture.Los Angeles: Design Agency, 2014: 539-548.
    [2] TIBBITS S. 4D printing: multi-material shape change[J]. Architectural Design,2014,84(1):116-121 doi: 10.1002/ad.v84.1
    [3] 苏亚东,王向明,吴斌,等. 4D打印技术在航空飞行器研制中的应用潜力[J]. 航空材料学报,2018,38(2):59-69

    SU Y D,WANG X M,WU B,et al. Application potential of 4D printing technology in development of aircraft[J]. Journal of Aeronautical Materials,2018,38(2):59-69.)
    [4] 任天宁,朱光明,聂晶. 形状记忆聚合物复合材料可展开结构的研究进展[J]. 航空材料学报,2018,38(4):47-55

    REN T N,ZHU G M,NIE J. Research progress on deployable structures of shape memory polymer composites[J]. Journal of Aeronautical Materials,2018,38(4):47-55.)
    [5] 温建强,章力旺. 压电材料的研究新进展[J]. 应用声学,2013,32(5):413-418

    WEN J Q,ZHANG L W. Progress in piezoelectric materials[J]. Applied Acoustics,2013,32(5):413-418.)
    [6] 陶宝祺,熊克. 智能材料结构的定义及应用前景[J]. 中国科学基金,1995(2):40-46

    TAO B Q,XIONG K. Definition and application prospect of intelligent material structure[J]. China Science Foundation,1995(2):40-46.)
    [7] 谢建宏,张为公,梁大开. 智能材料结构的研究现状及未来发展[J]. 材料导报,2006,20(11):6-9 doi: 10.3321/j.issn:1005-023X.2006.11.008

    XIE J H,ZHANG W G,LIANG D K. Research status and future development of smart materials and structures[J]. Materials Review,2006,20(11):6-9.) doi: 10.3321/j.issn:1005-023X.2006.11.008
    [8] 余海湖,赵愚,姜德生. 智能材料与结构的研究及应用[J]. 武汉理工大学学报,2001,23(11):37-41 doi: 10.3321/j.issn:1671-4431.2001.11.011

    YU H H,ZHAO Y,JIANG D S. Development and applications of smart materials and structures[J]. Journal of Wuhan University of Technology,2001,23(11):37-41.) doi: 10.3321/j.issn:1671-4431.2001.11.011
    [9] BOGUE R. Smart materials: a review of capabilities and applications[J]. Assembly Automation,2014,34(1):16-22 doi: 10.1108/AA-10-2013-094
    [10] ZHONG X K,JOANNE E M T,YONG L,et al. 3D printing of smart materials: a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping,2015,10(3):103-122 doi: 10.1080/17452759.2015.1097054
    [11] 任天宁,朱光明,韩阳阳. 电致形状记忆复合材料的制备与性能[J]. 航空材料学报,2018,38(6):57-63

    REN T N,ZHU G M,HAN Y Y. Preparation and properties of electro-induced shape memory composites[J]. Journal of Aeronautical Materials,2018,38(6):57-63.)
    [12] 冷劲松,兰鑫,刘彦菊,等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报,2010,31(4):950-956 doi: 10.3873/j.issn.1000-1328.2010.04.002

    LENG J S,LAN X,LIU Y J,et al. Shape memory polymers composites and their applicationsin deployable structures[J]. Journal of Astronautics,2010,31(4):950-956.) doi: 10.3873/j.issn.1000-1328.2010.04.002
    [13] LEIST S K,ZHOU J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials[J]. Virtual and Physical Prototyping,2016,11(4):249-262 doi: 10.1080/17452759.2016.1198630
    [14] LEE J,KIM H C,CHOI J W,et al. A review on 3D printed smart devices for 4D printing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(3):373-383 doi: 10.1007/s40684-017-0042-x
    [15] KIM K,ZHU W,QU X,et al. 3D optical printing of piezoelectric nanoparticle polymer composite materials[J]. ACS Nano,2014,8(10):9799 doi: 10.1021/nn503268f
    [16] RAVIV D,ZHAO W,MCKNELLY C,et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports,2014,4(1):7422
    [17] ROSSITER J, WALTERS P, STOIMENOV B. Printing 3D dielectric elastomer actuators for soft robotics[C]. California, USA: International Society for Optics and Photonics, 2009.
    [18] DUBEY V N,DAI J S. A packaging robot for complex cartons[J]. Industrial Robot,2006,33(2):82-87 doi: 10.1108/01439910610651374
    [19] ZHAO X,SUO Z. Method to analyze programmable deformation of dielectric elastomer layers[J]. Applied Physics Letters,2008,93(25):251902 doi: 10.1063/1.3054159
    [20] KOFOD G,WIRGES W,PAAJANEN M,et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters,2007,90(8):081916-081916 doi: 10.1063/1.2695785
    [21] BAUER S,BAUER-GOGONEA S,GRAZ I,et al. 25th anniversary article:a soft future: from robots and sensor skin to energy harvesters[J]. Advanced Materials,2014,26(1):149-162 doi: 10.1002/adma.201303349
    [22] GE Q,QI H J,DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters,2013,103(13):68-225
    [23] 王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报,2016,36(4):89-98

    WANG Y Q,SHEN J X,WU H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials,2016,36(4):89-98.)
    [24] YUAN C,WANG T,DUNN M L,et al. 3D printed active origami with complicated folding patterns[J]. International Journal of Precision Engineering and Manufacturing-green Technology,2017,4(3):281-289 doi: 10.1007/s40684-017-0034-x
    [25] RAJABI A H,JAFFE M,ARINZEH T L. Piezoelectric materials for tissue regeneration:A review[J]. Acta Biomaterialia,2015,24:12-23 doi: 10.1016/j.actbio.2015.07.010
    [26] WEI Z G,R S,MIYAZAKI S. Shape-memory materials and hybrid composites for smart systems:part I:shape-memory materials[J]. Journal of Materials Science,1998,33:3743-37262 doi: 10.1023/A:1004692329247
    [27] YU K,RITCHIE A,MAO Y,et al. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials[J]. Procedia IUTAM,2015,12:193-203 doi: 10.1016/j.piutam.2014.12.021
    [28] GE Q,SAKHAEI A H,LEE H,et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports,2016,6(1):31110 doi: 10.1038/srep31110
    [29] CHOONG Y Y C,MALEKSAEEDI S,ENG H,et al. 4D printing of high performance shape memory polymer using stereolithography[J]. Materials & Design,2017,126:219-225
    [30] SEOL Y J,KANG H W,LEE S J,et al. Bioprinting technology and its applications[J]. European Journal of Cardio-Thoracic Surgery,2014,46(3):342-348 doi: 10.1093/ejcts/ezu148
    [31] OZBOLAT IT,YUY. Bioprinting toward organ faborication: challenges and future trends[J]. IEEE Transactions on Biomedical Engineering,2013,60(3):691-699 doi: 10.1109/TBME.2013.2243912
    [32] AN J,TEOH J E M,SUNTORNNOND R,et al. Design and 3D printing of scaffolds and tissues[J]. Engineering,2015,1(2):261-268 doi: 10.15302/J-ENG-2015061
    [33] GLADMAN A S,MATSUMOTO E A,NUZZO R G,et al. Biomimetic 4D printing[J]. Nature Materials,2016,15:413-418 doi: 10.1038/nmat4544
    [34] OTSUKA K,REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science,2005,50:511-678 doi: 10.1016/j.pmatsci.2004.10.001
    [35] BORMANN T,SCHUMACHER R,BERT M,et al. Tailoring selective laser melting process parameters for NiTi implants[J]. Journal of Materials Engineering and Performance,2012,21(12):2519-2524 doi: 10.1007/s11665-012-0318-9
    [36] FRENZEL J,ZHANG Z,SOMSEN C,et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Materialia,2010,58(9):3444-3458 doi: 10.1016/j.actamat.2010.02.019
    [37] CLARE A T,CHALKER P R,DAVIES S,et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications[J]. International Journal of Mechanics & Materials in Design,2008,4(2):181-187
    [38] DADBAKHSH S,SPEIRS M,KRUTH J,et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts[J]. Advanced Engineering Materials,2014,16(9):1140-1146 doi: 10.1002/adem.v16.9
    [39] DADBAKHSH S,SPEIRS M,VAN H J,et al. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications[J]. MRS Bull,2016,41:765-774 doi: 10.1557/mrs.2016.209
    [40] SHENG L,HANY H,MOATAZ M A,et al. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting[J]. Acta Materialia,2016,105:75-83 doi: 10.1016/j.actamat.2015.12.017
    [41] HABERLAND C,ELAHINIA M,WALKER J M,et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures,2014,23(10):104002 doi: 10.1088/0964-1726/23/10/104002
    [42] MA J,FRANCO B,TAPIA G,et al. Spatial control of functional response in 4D-printed active metallic structures[J]. Scientific Reports,2017,7:46707 doi: 10.1038/srep46707
    [43] ELAHINIA M,SHAYESTEH M N,TAHERI A M,et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science,2016,83:630-663 doi: 10.1016/j.pmatsci.2016.08.001
    [44] YANG C,ZHAO Y J,KANG L M,et al. High-strength silicon brass manufactured by selective laser melting[J]. Materials Letters,2018:169-172
    [45] MARTIN J H,YAHATA B D,HUNDLEY J M,et al. 3D printing of high-strength aluminium alloys[J]. Nature,2017,549(7672):365 doi: 10.1038/nature23894
    [46] DADBAKHSHS,SPEIRS M,KRUTH J P,et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds[J]. CIRP Annals - Manufacturing Technology,2015(64):209-212
    [47] 程琴荣. 制备工艺对钛系形状记忆合金组织性能的影响研究[D]. 广州: 华南理工大学. 2015.

    CHENG Q R. Effect of fabrication process on the microstructures and properties of the titanium system shape memory alloys[D]. Guangzhou: South China University of Technology, 2015.
    [48] SOHEIL S,ALI S T,MOHSEN T A,et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni rich NiTi alloys[J]. Materials Science & Engineering: A,2017,686:1-10
    [49] YANG C,KANG L M,LI X X,et al. Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering[J]. Acta Materialia,2017,491:491-502
    [50] YANG C,CHENG Q R,LIU L H,et al. Effect of minor Cu content on microstructure and mechanical property of NiTiCu bulk alloys fabricated by crystallization of metallic glass powder[J]. Intermetallics,2015,56:37-43 doi: 10.1016/j.intermet.2014.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (6041) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return