Volume 38 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Yangxin LI, Xiaoqin ZENG. A Review on Mg-RE Alloys with High Product of Strength and Elongation[J]. Journal of Aeronautical Materials, 2018, 38(4): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001012
Citation: Yangxin LI, Xiaoqin ZENG. A Review on Mg-RE Alloys with High Product of Strength and Elongation[J]. Journal of Aeronautical Materials, 2018, 38(4): 1-9. 10.11868/j.issn.1005-5053.2018.001012

A Review on Mg-RE Alloys with High Product of Strength and Elongation

doi: 10.11868/j.issn.1005-5053.2018.001012
  • Received Date: 2018-05-31
  • Rev Recd Date: 2018-06-20
  • Available Online: 2018-07-11
  • Publish Date: 2018-08-01
  • The combination of magnesium and rare-earth (RE) elements can produce the lightest constructional metals, i.e. Mg-RE alloys. These Mg-RE based alloys have been used in the fields of aerospace, electronics, communications, and automobiles, etc. However, most of the Mg alloys have been suffered from the " strength-ductility trade-off” phenomenon, which limits their applications. With the present of long period stacking ordered (LPSO) phases, the Mg-RE-X alloys usually exhibit high strength, high ductility and high creep resistance, and have drawn increasing interest due to their promising mechanical properties in the past two decades. This paper reviews the development of Mg-RE based alloys, proposes a concept of high " product of strength and elongation” Mg alloys, and three main issues to be solved in future, which are (1) formation and deformation mechanisms of different structural units within a single-crystal Mg grain; (2) strengthening and toughening mechanisms in polycrystal Mg alloys; (3) manipulation of different structural units to produce Mg alloys with high product of strength and elongation.

     

  • loading
  • [1] 丁文江. 镁合金科学与技术[M]. 北京: 科学出版社, 2007.
    [2] POLLOCK T M. Weight loss with magnesium alloys[J]. Science, 2010, 328(5981): 986-987 doi: 10.1126/science.1182848
    [3] ROKHLIN L L. Magnesium alloys containing rare earth metals [M]. Taylor and Francis, 2003.
    [4] YANG Z, LI J P, ZHANG J X, et al. Review on research and development of magnesium alloys[J]. Acta Metallurgica Sinica, 2008, 21(5): 313-328 doi: 10.1016/S1006-7191(08)60054-X
    [5] 刘光华. 稀土固体材料学[M]. 北京: 机械工业出版社, 1997.
    [6] 徐光宪. 稀土[M]. 北京: 冶金工业出版社, 1995.
    [7] 曾小勤, 丁文江. 稀土镁合金研究与应用进展[C] //中国包头稀土产业论坛专家报告集. 包头: [出版者不详], 2015.

    ZENG X Q, DING W J. Progress in research and application of rare earth magnesium alloys[C]//Expert Report on the Rare Earth Industry Forum in Baotou, Baotou, China: [s.n.], 2015.
    [8] NIE J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical & Materials Transactions A, 2012, 43(11): 3891-3939
    [9] HONG M, SHAH S S A, WU D, et al. Ultra-high strength Mg-9Gd-4Y-0.5Zr alloy with bi-modal structure processed by traditional extrusion[J]. Metals & Materials International, 2016, 22(6): 1091-1097
    [10] HOMMA T, KUNITO N, KAMADO S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scripta Materialia, 2009, 61(6): 644-647 doi: 10.1016/j.scriptamat.2009.06.003
    [11] LI Y, WANG J, CHEN K, et al. Self-patterning Gdnano-fibers in Mg-Gd alloys[J]. Scientific Reports, 2016, 6: 38537 doi: 10.1038/srep38537
    [12] NIE J F, WILSON N C, ZHU Y M, et al. Solute clusters and GP zones in binary Mg-RE alloys[J]. Acta Materialia, 2016, 106: 260-271 doi: 10.1016/j.actamat.2015.12.047
    [13] ZHU Y M, MORTON A J, WEYLAND M, et al. Characterization of planar features in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(2): 464-475 doi: 10.1016/j.actamat.2009.09.025
    [14] BUGNET M, KULA A, NIEWCZAS M, et al. Segregation and clustering of solutes at grain boundaries in Mg–rare earth solid solutions[J]. Acta Materialia, 2014, 79(41): 66-73
    [15] ISSA A, SAAL J E, WOLVERTON C. Formation of high-strength β′ precipitates in Mg-RE alloys: The role of the Mg/β″ interfacial instability[J]. Acta Materialia, 2015, 83(83): 75-83
    [16] ALI Y, QIU D, JIANG B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article[J]. Journal of Alloys & Compounds, 2015, 619: 639-651
    [17] SUN H Q, SHI Y N, ZHANG M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J]. Acta Materialia, 2007, 55(3): 975-982 doi: 10.1016/j.actamat.2006.09.018
    [18] NIE J F, ZHU Y M, LIU J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries[J]. Science, 2013, 340(6135): 957-960 doi: 10.1126/science.1229369
    [19] LI Y X, ZHU G Z, QIU D, et al. The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys[J]. Journal of Alloys & Compounds, 2016, 660: 252-257
    [20] 尹冬弟. Mg-11Y-5Gd-2Zn-05.Zr(wt.%)铸造耐热镁合金高温变形、强化及断裂机制的研究[D]. 上海: 上海交通大学, 2013.

    YIN D D. Study on high temperature deformation, strengthening and fracture mechanism of Mg-11Y-5Gd-2Zn-05.Zr(wt.%)casting heat-resistant magnesium alloys[D]. Shanghai: Shanghai Jiaotong University, 2013.
    [21] NIE J F, MUDDLE B C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J]. Acta Materialia, 2000, 48(8): 1691-1703 doi: 10.1016/S1359-6454(00)00013-6
    [22] NIE J F, MUDDLE B C. Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C[J]. Scripta Materialia, 1999, 40(10): 1089-1094 doi: 10.1016/S1359-6462(99)00084-6
    [23] 占亮, 王伟, 高丹, 等. 耐热高强镁合金WE54成分范围优化[J]. 铸造, 2011, 60(2): 126-128 doi: 10.3870/tzzz.2011.02.010

    ZHAN L, WANG W, GAO D, et al. Heat-resistant and high-strength magnesium alloy WE54 composition range optimization[J]. Foundry, 2011, 60(2): 126-128.) doi: 10.3870/tzzz.2011.02.010
    [24] 李吉林, 冯俊宁, 耿桂宏. 铸造工艺对WE54镁合金显微组织和力学性能的影响[J]. 铸造技术, 2018(2): 316-320

    LI J L, FENG J N, GENG G H, et al. Effect of casting process on microstructure and mechanical properties of WE54 magnesium alloy[J]. Foundry Technology, 2018(2): 316-320.)
    [25] 高岩. Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究[D]. 上海: 上海交通大学, 2009.

    GAO Y. Study on microstructure, properties and creep behavior of Mg-Y-Gd-Zn-Zr magnesium alloys[D]. Shanghai: Shanghai Jiaotong University, 2009.
    [26] YIN D D, WANG Q D, BOEHLERT C J, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr(wt.%)at 573 K[J]. Materials Science & Engineering: A, 2012, 546: 239-247
    [27] 张清, 李全安, 张兴渊, 等. Mg-Gd系耐热镁合金的研究进展[J]. 铸造, 2011, 60(11): 1080-1083

    ZHANG Q, LI Q A, ZHANG X Y, et al. Research progress of Mg-Gd heat-resistant magnesium alloys[J]. Foundry, 2011, 60(11): 1080-1083.)
    [28] DRITS M E, SVIDERSKAYA Z A, ROKHLIN L L, et al. Effect of alloying on the properties of Mg-Gd alloys[J]. Metal Science & Heat Treatment, 1979, 21(11): 887-889
    [29] Kamado S. Ageing characteristics and high temperature tensile properties of magnesium alloys containing heavy rare earth elements[C]//Proc. of 3rd Intern. Magnesium Conf., 1997. The Institute of Materials, 1997: 327-342.
    [30] 何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D]. 上海: 上海交通大学, 2007.

    HE S M. Study on microstructure evolution, properties and fracture behavior of Mg-Gd-Y-Zr(-Ca)alloys[D]. Shanghai: Shanghai Jiaotong University, 2007.
    [31] ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(8): 2936-2947 doi: 10.1016/j.actamat.2010.01.022
    [32] ZHU Y M, WEYLAND M, MORTON A J, et al. The building block of long-period structures in Mg-RE-Zn alloys[J]. Scripta Materialia, 2009, 60(11): 980-983 doi: 10.1016/j.scriptamat.2009.02.029
    [33] NIE J F, OHISHI K, GAO X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy[J]. Acta Materialia, 2008, 56(20): 6061-6076 doi: 10.1016/j.actamat.2008.08.025
    [34] NIE J F, GAO X, ZHU S M. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scripta Materialia, 2005, 53(9): 1049-1053 doi: 10.1016/j.scriptamat.2005.07.004
    [35] SUZUKI M, KIMURA T, KOIKE J, et al. Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys[J]. Scripta Materialia, 2003, 48(8): 997-1002 doi: 10.1016/S1359-6462(02)00590-0
    [36] SUZUKI M, KIMURA T, KOIKE J, et al. Effects of zinc on creep strength and deformation substructures in Mg-Y alloy[J]. Materials Science & Engineering: A, 2004, 387(36): 706-709
    [37] 吴玉娟. Mg-Gd-Zn-Zr镁合金中长周期堆垛有序结构的形成及强韧化机理研究[D]. 上海: 上海交通大学, 2009.

    WU Y J. Formation, strengthening and toughening mechanism of long period stacking ordered structure in Mg-Gd-Zn-Zr magnesium alloys[D]. Shanghai: Shanghai Jiaotong University, 2009.
    [38] 李扬欣. 稀土镁合金中的长周期堆垛有序结构相及其对组织与性能的影响[D]. 上海: 上海交通大学, 2014.

    LI Y X. The effect of long period stacking ordered phases on mechanical properties in Magnesium alloys containing rare earth elements[D]. Shanghai: Shanghai Jiaotong University, 2014.
    [39] LUO Z P, ZHANG S Q. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J]. Journal of Materials Science Letters, 2000, 19(9): 813-815 doi: 10.1023/A:1006793411506
    [40] INOUE A, KAWAMURA Y, MATSUSHITA M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. Journal of Materials Research, 2001, 16(7): 1894-1900 doi: 10.1557/JMR.2001.0260
    [41] KAWAMURA Y, HAYASHI K, INOUE A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Materials Transactions, 2005, 42(7): 1172-1176
    [42] AMIYA K, OHSUNA T, INOUE A. Long-period hexagonal structures in melt-spun Mg97Ln2Zn1(Ln=lanthanide metal)alloys[J]. Materials Transactions, 2005, 44(10): 2151-2156
    [43] PING D H, HONO K, KAWAMURA Y, et al. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy[J]. Philosophical Magazine Letters, 2002, 82(10): 543-551 doi: 10.1080/0950083021000018652
    [44] WANG Y F, WANG Z Z, YU N, et al. Microstructure investigation of the 6H-type long-period stacking order phase in Mg97Y2Zn1 alloy[J]. Scripta Materialia, 2008, 58(10): 807-810 doi: 10.1016/j.scriptamat.2007.12.024
    [45] MATSUDA M, IL S, KAWAMURA Y. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Science & Engineering: A, 2005, 393(1): 269-274
    [46] ABE E, ONO A, ITOI T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy[J]. Philosophical Magazine Letters, 2011, 91(10): 690-696 doi: 10.1080/09500839.2011.609149
    [47] YI J X, TANG B Y, CHEN P, et al. Crystal structure of the mirror symmetry 10H-type long-period stacking order phase in Mg-Y-Zn alloy[J]. Journal of Alloys & Compounds, 2011, 509(3): 669-674
    [48] MI S B, JIN Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys[J]. Scripta Materialia, 2013, 68(8): 635-638 doi: 10.1016/j.scriptamat.2012.12.025
    [49] YAMASAKI M, NISHIJIMA M, SASAKI M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Materialia, 2007, 55(20): 6798-6805 doi: 10.1016/j.actamat.2007.08.033
    [50] YOSHIMOTO S, YAMASAKI M, KAWAMURA Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure[J]. Materials Transactions, 2006, 47(4): 959-965 doi: 10.2320/matertrans.47.959
    [51] YAMASAKI M, ANAN T, YOSHIMOTO S, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scripta Materialia, 2005, 53(7): 799-803 doi: 10.1016/j.scriptamat.2005.06.006
    [52] EGUSA D, ABE E. The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges[J]. Acta Materialia, 2012, 60(1): 166-178 doi: 10.1016/j.actamat.2011.09.030
    [53] HONMA T, OHKUBO T, KAMADO S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J]. Acta Materialia, 2007, 55(12): 4137-4150 doi: 10.1016/j.actamat.2007.02.036
    [54] ZHU Y M, MORTON A J, NIE J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Materialia, 2012, 60(19): 6562-6572 doi: 10.1016/j.actamat.2012.08.022
    [55] ITOI T, SEIMIYA T, KAWAMURA Y, et al. Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scripta Materialia, 2004, 51(2): 107-111 doi: 10.1016/j.scriptamat.2004.04.003
    [56] SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010, 58(14): 4760-4771 doi: 10.1016/j.actamat.2010.05.012
    [57] LI Y X, QIU D, RONG Y H, et al. TEM study on the microstructural evolution in an Mg-Y-Gd-Zn alloy during ageing[J]. Intermetallics, 2013, 40(3): 45-49
    [58] KISHIDA K, YOKOBAYASHI H, INUI H. The most stable crystal structure and the formation processes of an order-disorder(OD)intermetallic phase in the Mg-Al-Gd ternary system[J]. Philosophical Magazine, 2013, 93(21): 2826-2846 doi: 10.1080/14786435.2013.790566
    [59] KISHIDA K, YOKOBAYASHI H, INOUE A, et al. Crystal structures of long-period stacking-ordered phases in the Mg-TM-RE ternary systems[J]. Mrs Proceedings, 2013, 1516: 291-302
    [60] 戎咏华, 分析电子显微学导论[M]. 高等教育出版社, 2006.
    [61] KAWAMURA Y, YAMASAKI M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure[J]. Materials Transactions, 2007, 48(11): 2986-2992 doi: 10.2320/matertrans.MER2007142
    [62] 张松, 袁广银, 卢晨, 等. 长周期结构增强镁合金的研究进展[J]. 材料导报, 2008, 22(2): 61-63 doi: 10.3321/j.issn:1005-023X.2008.02.016

    ZHANG S, YUAN G Y, LU C, et al. Research progress of long period structure enhanced magnesium alloys[J]. Materials Review, 2008, 22(2): 61-63.) doi: 10.3321/j.issn:1005-023X.2008.02.016
    [63] LI Y, YANG C, ZENG X, et al. Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase[J]. Materials Characterization, 2018
    [64] SAAL J E, WOLVERTON C. Thermodynamic stability of Mg-based ternary long-period stacking ordered structures[J]. Acta Materialia, 2014, 68(10): 325-338
    [65] ZHANG M X. Effect of long-period stacking ordered phase on thermal stability of refined grains in Mg-RE-based alloys[J]. Philosophical Magazine, 2014, 94(12): 1311-1326 doi: 10.1080/14786435.2014.885141
    [66] KAWAMURA Y, YOSHIMOTO S. High strength Mg-Zn-Y alloys with LPSO structure[M]//Magnesium Technology. [S.l]: Mendeley Ltd, 2005: 499-502
    [67] NIE J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48(8): 1009-1015 doi: 10.1016/S1359-6462(02)00497-9
    [68] ONORBE E, GARCES G, PEREZ P, et al. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg-Y2X-ZnX alloys[J]. Journal of Materials Science, 2012, 47(2): 1085-1093 doi: 10.1007/s10853-011-5899-4
    [69] ABE E, KAWAMURA Y, HAYASHI K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM[J]. Acta Materialia, 2002, 50(15): 3845-3857 doi: 10.1016/S1359-6454(02)00191-X
    [70] HAGIHARA K, KINOSHITA A, SUGINO Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Materialia, 2010, 58(19): 6282-6293 doi: 10.1016/j.actamat.2010.07.050
    [71] LIU K, ZHANG J, LU H, et al. Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr alloys[J]. Materials & Design, 2010, 31(1): 210-219
    [72] MINE Y, YOSHIMURA H, MATSUDA M, et al. Microfracture behaviour of extruded Mg-Zn-Y alloys containing long-period stacking ordered structure at room and elevated temperatures[J]. Materials Science and Engineering: A, 2013, 570: 63-69 doi: 10.1016/j.msea.2013.01.069
    [73] WANG J, SONG P, HUANG S, et al. High-strength and good-ductility Mg-RE-Zn-Mn magnesium alloy with long-period stacking ordered phase[J]. Materials Letters, 2013, 93: 415-418 doi: 10.1016/j.matlet.2012.11.076
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (5957) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return