Volume 38 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
Fenghuai YANG, Guoxin LU, Qingtian YANG, Yongkang ZHANG. Research Progress of Laser Shock Treatment in the Field of Material Forming[J]. Journal of Aeronautical Materials, 2018, 38(6): 1-10. doi: 10.11868/j.issn.1005-5053.2018.000081
Citation: Fenghuai YANG, Guoxin LU, Qingtian YANG, Yongkang ZHANG. Research Progress of Laser Shock Treatment in the Field of Material Forming[J]. Journal of Aeronautical Materials, 2018, 38(6): 1-10. 10.11868/j.issn.1005-5053.2018.000081

Research Progress of Laser Shock Treatment in the Field of Material Forming

doi: 10.11868/j.issn.1005-5053.2018.000081
  • Received Date: 2018-07-16
  • Rev Recd Date: 2018-09-06
  • Available Online: 2018-09-13
  • Publish Date: 2018-08-01
  • Laser shock treatment is a kind of advanced surface strengthening technology for metallic materials, and its remarkable strengthening effect has been verified and universally accepted in many different metallic materials. In order to prevent the influence of laser shock on the shape size of precision parts or make use of the technology to introduce plastic deformation of metallic materials, it is necessary to study the deformation criterion of materials under laser shock. In this paper, the deformation law of different materials treated by laser shock is analyzed, and the limitation of laser shock in deformation phenomenon is explained based on the deformation mechanism of stress gradient and impact bending, the necessity of basic research on material deformation caused by laser shock is proposed. The effect of many factors such as laser parameters and impact modes, constraint modes on the laser shock-induced deformation is summarized, and it is proved that the adjustment and optimization of multiple parameters play an important role in controlling laser shock-induced deformation degree. Moreover, the advantages of numerical simulation method in the study of laser shock-induced deformation are analyzed in this paper, and at the same time,the urgency of establishing a material constitutive model adapting to high strain rate deformation and perfecting the simulation of laser plasma formation process is put forward. The development of laser shock deformation law in advanced manufacturing industry is prospected through the introduction of the sizing technology of laser shock, and the research directions of the deformation calibration based on laser shock and the on-line monitoring of deformation degree are presented.

     

  • loading
  • [1] 袁哲俊, 王先逵. 精密和超精密加工技术[M]. 北京: 机械工业出版社, 2016.

    YUAN Z J, WANG X K. Precision and ultra precision machining technology[M]. Beijing: Mechanical Industry Press, 2016.
    [2] 聂祥樊, 何卫锋, 臧顺来, 等. 激光冲击对TC11钛合金组织和力学性能的影响[J]. 航空动力学报, 2014, 29(2): 321-327

    NIE X F, HE W F, ZANG S L, et al. Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J]. Journal of Aerospace Power, 2014, 29(2): 321-327.)
    [3] LIN B, ZABEEN S, TONG J, et al. Residual stresses due to foreign object damage in laser-shock peened aerofoils: simulation and measurement[J]. Mechanics of Materials, 2015, 82: 78-90 doi: 10.1016/j.mechmat.2014.12.001
    [4] LU G X, LIU J D, QIAO H C, et al. Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure[J]. Surface & Coatings Technology, 2017, 321: 74-80
    [5] WANG J T, ZHANG Y K, CHEN J F, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy[J]. Materials Science and Engineering: A, 2017, 704: 459-468 doi: 10.1016/j.msea.2017.08.050
    [6] CHASWAL V. A study of laser shock peening on fatigue behavior of IN718Plus superalloy: simulations and experiments[D]. Ohio, USA: University of Cincinnati, 2013.
    [7] 邓仲华, 刘其斌, 徐鹏, 等. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147

    DENG Z H, LIU Q B, XU P, et al. Corrosion resistance and mechanism of metallic surface processed by square-spot laser shock peening[J]. Journal of Materials Engineering, 2018, 46(8): 140-147.)
    [8] SUN R J, LI L H, ZHU Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening[J]. Journal of Alloys & Compounds, 2018, 747: 255-265
    [9] HACKEL L, HARRIS F. Contour forming of metals by laser peening: US6410884B1[P/OL]. 2002-6-25. https://www.osti.gov/servlets/purl/874542.
    [10] MURAKAWA H, DENG D, RASHED S, et al. Prediction of distortion produced on welded structures during assembly using inherent deformation and interface element[J]. Transactions of JWRI, 2009, 38(2): 63-69
    [11] 曹宇鹏, 冯爱新, 薛伟, 等. 激光冲击波诱导2024铝合金表面动态应变特性试验研究及理论分析[J]. 中国激光, 2014, 41(9): 90-95

    CAO Y P, FENG A X, XUE W, et al. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy surface[J]. Chinese Journal of Lasers, 2014, 41(9): 90-95.)
    [12] HU Y X, XU X X, YAO Z Q, et al. Laser peen forming induced two way bending of thin sheet metals and its mechanisms[J]. Journal of Applied Physics, 2010, 108(7): 73117 doi: 10.1063/1.3486218
    [13] ZHOU W F, REN X D, WANG C C, et al. Residual stress induced convex bending in laser peen formed aluminum alloy[J]. Journal of Laser Applications, 2018, 30(1): 012001 doi: 10.2351/1.5012962
    [14] 孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2001.

    SUN C W. Effect of laser irradiation[M]. Beijing: National Defence Industry Press, 2001.
    [15] 任旭东, 张永康, 周建忠, 等. 激光参数对Ti6Al4V钛合金激光冲击成形的影响[J]. 中国有色金属学报, 2006(11): 1850-1854 doi: 10.3321/j.issn:1004-0609.2006.11.004

    REN X D, ZHANG Y K, ZHOU J Z, et al. Influence of laser parameters on laser-shock forming of Ti-6Al-4V alloy[J]. The Chinese Journal of Nonferrous Metals, 2006(11): 1850-1854.) doi: 10.3321/j.issn:1004-0609.2006.11.004
    [16] 曹子文, 邹世坤, 车志刚. 激光诱导冲击波加载下铝合金弯曲变形规律与表面特性研究[J]. 激光与光电子学进展, 2015(12): 130-134

    CAO Z W, ZOU S K, CHE Z G. Bending deformation and surface characteristics of 2024 aluminum alloy processed by laser-induced shock wave[J]. Laser & Optoelectronics Progress, 2015(12): 130-134.)
    [17] 卢国鑫. 激光冲击对高温合金表面形貌、组织与性能的影响[D]. 北京: 中国科学院大学, 2017.

    LU G X. Effect of Laser Shock on surface topography, microstructure and mechanical behaviors of superalloys[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [18] 卢国鑫, 金涛, 周亦胄, 等. 激光冲击强化在高温合金材料应用上的研究进展[J]. 中国有色金属学报, 2018, 28(9): 1755-1764

    LU G X, JIN T, ZHOU Y Z, et al. Research progress of applications of laser shock processing on superalloys[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1755-1764.)
    [19] 黄志伟, 张兴权, 章艳, 等. 边界约束条件对薄板激光喷丸诱导残余应力和塑性变形的影响[J]. 红外与激光工程, 2017(8): 109-116

    HUANG Z W, ZHANG X Q, ZHANG Y, et al. Effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening[J]. Infrared and Laser Engineering, 2017(8): 109-116.)
    [20] 胡雅骥, 陈彦初, 陈冬. 激光冲击强化技术在航空发动机叶片上的应用研究[J]. 燃气涡轮试验与研究, 2009(3): 54-56 doi: 10.3969/j.issn.1672-2620.2009.03.013

    HU Y J, CHEN Y C, CHEN D. Research on the application of laser shock processing technology on aero-engine blade[J]. Gas Turbine Experiment and Research, 2009(3): 54-56.) doi: 10.3969/j.issn.1672-2620.2009.03.013
    [21] 王文兵, 陈东林, 汪诚, 等. 薄板激光冲击强化残余应力场的数值模拟与试验[J]. 塑性工程学报, 2010, 17(2): 28-32 doi: 10.3969/j.issn.1007-2012.2010.02.006

    WANG W B, CHEN D L, WANG C, et al. Numerical simulation and experimental investigation of residual stress field for laser shock processing[J]. Journal of Plasticity Engineering, 2010, 17(2): 28-32.) doi: 10.3969/j.issn.1007-2012.2010.02.006
    [22] FANG Y W, LI Y H, HE W F, et al. Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade[J]. Materials Science and Engineering: A, 2013, 559: 683-692 doi: 10.1016/j.msea.2012.09.009
    [23] CORREA C, RUIZ DE LARA L, DÍAZ M, et al. Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J]. International Journal of Fatigue, 2015, 79: 1-9 doi: 10.1016/j.ijfatigue.2015.04.018
    [24] DING K. FEM simulation of two sided laser shock peening of thin sections of Ti6Al4V alloy[J]. Surface Engineering, 2003, 19(2): 127-133 doi: 10.1179/026708403225002568
    [25] BHAMARE S, RAMAKRISHNAN G, MANNAVA SEETHA R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface & Coatings Technology, 2013, 232: 464-474
    [26] LUO K Y, LIU B, WU L J, et al. Tensile properties, residual stress distribution and grain arrangement as a function of sheet thickness of Mg-Al-Mn alloy subjected to two-sided and simultaneous LSP impacts[J]. Applied Surface Science, 2016, 369: 366-376 doi: 10.1016/j.apsusc.2016.02.045
    [27] 王冬宇, 胡永祥, 姚振强. 薄壁结构双侧异步激光喷丸强化试验研究[J]. 航空制造技术, 2017(8): 59-63

    WANG D Y, HU Y X, YAO Z Q. Experimental investigation of double-side laser peening of thin-wall parts with alternate side laser scanning[J]. Aeronautical Manufacturing Technology, 2017(8): 59-63.)
    [28] HU Y X, YANG R Y, WANG D Y, et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component[J]. Journal of Materials Processing Technology, 2018, 251: 197-204 doi: 10.1016/j.jmatprotec.2017.08.033
    [29] 李民, 纪看看, 刘涛, 等. 铝合金薄板在橡胶支撑下的激光冲击成形[J]. 激光与光电子学进展, 2017(10): 293-300

    LI M, JI K K, LIU T, et al. Laser shock forming of 2024-T351 aluminum alloy sheets supported by rubber[J]. Laser & Optoelectronics Progress, 2017(10): 293-300.)
    [30] HU Y X, LI Z, YU X C, et al. Effect of elastic prestress on the laser peen forming of aluminum alloy 2024-T351: experiments and eigenstrain-based modeling[J]. Journal of Materials Processing Technology, 2015, 221: 214-224 doi: 10.1016/j.jmatprotec.2015.02.030
    [31] RAMATI S, LEVASSEUR G, KENNERKNECHT S. Single piece wing skin utilization via advanced peen forming technology[C]//Proceedings of the 7th International Conference on Shot Peening(ICSP-7), [S.L.]: [s.n.], 2000: 2072213.
    [32] DING H, SHEN N G, LI K Q, et al. Experimental and numerical analysis of laser peen forming mechanisms of sheet metal[C]//ASME International Manufacturing Science and Engineering Conference, [S.L.]: [s.n.], 2014: V002T02A102.
    [33] 罗开玉, 陈起, 吕刺, 等. 双面激光同时冲击AM50镁合金板料的厚度分析[J]. 中国激光, 2014(1): 59-63

    LUO K Y, CHEN Q, LV C, et al. Thickness analysis of two-sided simultaneous laser shock processing on AM50 Mg alloy[J]. Chinese Journal of Lasers, 2014(1): 59-63.)
    [34] 王长雨, 罗开玉, 鲁金忠. 双面激光喷丸条件下冲击前进方向对AM50镁合金试样残余应力场的影响[J]. 中国激光, 2016(3): 43-49

    WANG C Y, LUO K Y, LU J Z. Effect of advancing direction on residual stress fields of am50 mg alloy specimens treated by double-sided laser shock peening[J]. Chinese Journal of Lasers, 2016(3): 43-49.)
    [35] RUBIO-GONZÁLEZ C, FELIX-MARTINEZ C, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth of duplex stainless steel[J]. Materials Science and Engineering: A, 2011, 528(3): 914-919 doi: 10.1016/j.msea.2010.10.020
    [36] PEI Y T, DUAN C H. Study on stress-wave propagation and residual stress distribution of Ti-17 titanium alloy by laser shock peening[J]. Journal of Applied Physics, 2017, 122(19): 193102 doi: 10.1063/1.5001724
    [37] ZHANG Z Y, NIAN Q, DOUMANIDIS CHARALABOS C, et al. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing[J]. Journal of Applied Physics, 2018, 123(5): 54901 doi: 10.1063/1.5021894
    [38] CORATELLA S, STICCHI M, TOPARLI M B, et al. Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples[J]. Surface & Coatings Technology, 2015, 273: 39-49
    [39] HU Y X, YAO Z Q, HU J. 3-D FEM simulation of laser shock processing[J]. Surface & Coatings Technology, 2006, 201(3/4): 1426-1435
    [40] HFAIEDH N, PEYRE P, SONG H B, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489 doi: 10.1016/j.ijfatigue.2014.05.015
    [41] 李应红. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013.

    LI Y H. Theory and technology of laser shock processing[M]. Beijing: Science Press, 2013.
    [42] HU Y X, HAN Y F, YAO Z Q, et al. Three-dimensional numerical simulation and experimental study of sheet metal bending by laser peen forming[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2010, 132: 61001 doi: 10.1115/1.4002585
    [43] SUN R J, LI L H, ZHU Y, et al. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening[J]. Modelling & Simulation in Materials Science & Engineering, 2017, 25(6): 1-16
    [44] 胡正云, 李满福, 谢兰生. TB6钛合金激光喷丸与机械喷丸残余应力场有限元模拟[J]. 航空材料学报, 2013, 33(4): 37-42

    HU Z Y, LI M F, XIE L S. Finite element simulation of residual stress field in tb6 titanium alloy induced by laser shock peening and shot peening[J]. Journal of Aeronautical Materials, 2013, 33(4): 37-42.)
    [45] YELLA P, VENKATESWARLU P, BUDDU RAMESH K, et al. Laser shock peening studies on SS316LN plate with various sacrificial layers[J]. Applied Surface Science, 2018, 435: 271-280 doi: 10.1016/j.apsusc.2017.11.088
    [46] TSUYAMA M, EHARA N, YAMASHITA K, et al. Effect of laser peening with glycerol as plasma confinement layer[J]. Applied Physics A, 2018, 124(3): 1-6
    [47] TAKATA T, ENOKI M, CHIVAVIBUL P, et al. Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening[J]. Materials Transactions, 2016, 57(10): 1776-1783 doi: 10.2320/matertrans.M2016150
    [48] XU Y J, DU Z Y, RUAN L, et al. Research status and development of laser shock peening[J]. Journal of Laser Applications, 2016, 28(2): 22508 doi: 10.2351/1.4943999
    [49] 陈浩, 曲中兴, 张立武. 航空航天整体结构件新型校形技术研究现状[J]. 航天制造技术, 2017(1): 11-16 doi: 10.3969/j.issn.1674-5108.2017.01.004

    CHEN H, QU Z X, ZHANG L W. Research status of new correction technology of aerospace monolithic component[J]. Aerospace Manufacturing Technology, 2017(1): 11-16.) doi: 10.3969/j.issn.1674-5108.2017.01.004
    [50] 丁华, 蔡兰. 基于激光冲击波的金属板料精密校形技术[J]. 江苏大学学报(自然科学版), 2011(2): 195-198 doi: 10.3969/j.issn.1671-7775.2011.02.016

    DING H, CAI L. Sheet metal sizing method based on laser shock wave[J]. Journal of Jiangsu University (Natural Science Edition), 2011(2): 195-198.) doi: 10.3969/j.issn.1671-7775.2011.02.016
    [51] 何卫锋, 李应红, 聂祥樊, 等. 激光冲击叶片榫头变形控制与疲劳试验[J]. 航空学报, 2014(7): 2041-2048

    HE W F, LI Y H, NIE X F, et al. Deformation control and fatigue test of blade tenon by laser shock peening[J]. Acta Aeronautica et Astronautica Sinica, 2014(7): 2041-2048.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (5133) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return