Volume 38 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
Caiyun LIANG, Zhijiang WANG. Research Progress of High Temperature Microwave Absorption Materials[J]. Journal of Aeronautical Materials, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010
Citation: Caiyun LIANG, Zhijiang WANG. Research Progress of High Temperature Microwave Absorption Materials[J]. Journal of Aeronautical Materials, 2018, 38(3): 1-9. 10.11868/j.issn.1005-5053.2018.001010

Research Progress of High Temperature Microwave Absorption Materials

doi: 10.11868/j.issn.1005-5053.2018.001010
  • Received Date: 2018-04-01
  • Rev Recd Date: 2018-04-23
  • Publish Date: 2018-06-01
  • High temperature microwave absorption material is significantly important to improve the viability of advanced weapon and equipment. This paper summarizes the research progress of high temperature microwave absorption materials. The current research status of SiC based oxygen-free ceramic materials, laminated ternary ceramics (MAX phases), carbon materials and metal oxides, including the methods of manipulating the electronic structure, doping, designing multilayer structure and designing porous structure to improve their absorption properties, together with the related mechanism is discussed. Oxidation and unclear mechanisms for microwave absorption performance at high temperature are the main problems in the present research of high temperature microwave absorption materials. Finally, the trend of developing applied research and designing smart high temperature microwave absorption material is also prospected.

     

  • loading
  • [1] YANG H J, CAO W Q, ZHANG D Q, et al. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7073-7077
    [2] LI M, YIN X, ZHENG G, CHEN M, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics[J]. Journal of Materials Science, 2015, 50(3): 1478-1487 doi: 10.1007/s10853-014-8709-y
    [3] LIU J, CAO M S, LUO Q, et al. Electromagnetic property and tunable microwave absorption of 3d nets from nickel chains at elevated temperature[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22615-22622
    [4] LIANG C, WANG Z. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40690-40696
    [5] WANG Z, WU L, ZHOU J, et al. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. Journal of Physical Chemistry C, 2013, 117(10): 5446-5452 doi: 10.1021/jp4000544
    [6] LIU J, CHE R, CHEN H, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 2012, 8(8): 1214-1221 doi: 10.1002/smll.201102245
    [7] ZHENG G, YIN X, WANG J. Complex permittivity and microwave absorbing property of Si3N4-SiC composite ceramic[J]. Journal of Materials Science & Technology, 2012, 28(8): 745-750
    [8] YAN L, HONG C, SUN B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6320-6331
    [9] XIAO W, XIAO P, LUO H, et al. Preparation and dielectric properties of Si3N4/SiCw composite ceramic[J]. Journal of Materials Science Materials in Electronics, 2014, 25(9): 4088-4094 doi: 10.1007/s10854-014-2133-6
    [10] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 119-130.
    [11] 成来飞, 莫然, 殷小玮, 等. 吸波结构型陶瓷基复合材料[J]. 硅酸盐学报, 2017, 45(12): 1738-1747

    CHENG L F, MO R, YIN X W, et al. Wave-absorbing structural ceramic matrix composites[J]. Journal of The Chinese Ceramic Society, 2017, 45(12): 1738-1747.)
    [12] 王永杰, 许轶, 芦艾, 等. 电磁屏蔽与吸波材料研究进展[J]. 化工新型材料, 2009, 37(11): 24-26 doi: 10.3969/j.issn.1006-3536.2009.11.008

    WANG Y J, XU Y, LU A, et al. Research progress on electromagnetic-shielding and absorbing materials[J]. New Chemical Materials, 2009, 37(11): 24-26.) doi: 10.3969/j.issn.1006-3536.2009.11.008
    [13] 张亚君; 殷小玮; 张立同, 等. 吸波型SiC陶瓷材料的研究进展[J]. 航空制造技术, 2014, 450(6): 113-118 doi: 10.3969/j.issn.1671-833X.2014.06.024

    ZHANG Y J, YIN X W, ZHANG L T, et al. Research progress of absorbing SiC ceramics[J]. Aeronautical Manufacturing Technology, 2014, 450(6): 113-118.) doi: 10.3969/j.issn.1671-833X.2014.06.024
    [14] BECHELANY M, BRIOUDE A, STADELMANN P, et al. Very long SiC-based coaxial nanocables with tunable chemical composition[J]. Advanced Functional Materials, 2010, 17(16): 3251-3257
    [15] MÉLINON P, MASENELLI B, TOURNUS F, et al. Playing with carbon and silicon at the nanoscale[J]. Nature Materials, 2007, 6(7): 479-90 doi: 10.1038/nmat1914
    [16] 刘海韬, 程海峰, 王军, 等. 高温结构吸波材料综述[J]. 材料导报, 2009, 23(19): 24-27 doi: 10.3321/j.issn:1005-023X.2009.19.006

    LIU H T, CHENG H F, WANG J, et al. Review on high-temperature structural radar absorbing materials[J]. Materials Review, 2009, 23(19): 24-27.) doi: 10.3321/j.issn:1005-023X.2009.19.006
    [17] YANG H J, YUAN J, LI Y, et al. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range[J]. Solid State Communications, 2013, 163(6): 1-6
    [18] ZHANG H, XU Y, ZHOU J, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry C, 2015, 3(17): 4416-4423 doi: 10.1039/C5TC00405E
    [19] KUANG J, CAO W. Stacking faults induced high dielectric permittivity of SiC wires[J]. Applied Physics Letters, 2013, 103(11): 183118
    [20] DOU Y K, LI J B, FANG X Y, et al. The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC[J]. Applied Physics Letters, 2014, 104(5): 112906
    [21] CHEN J H, LIU M, YANG T, et al. Improved microwave absorption performance of modified SiC in the 2-18 GHz frequency range[J]. Cryst Eng Comm, 2017, 19(3): 519-527 doi: 10.1039/C6CE02285E
    [22] KUANG J, JIANG P, LIU W, et al. Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers[J]. Applied Physics Letters, 2015, 106(21): 1
    [23] YANG H, CAO M, LI Y, et al. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings[J]. Advanced Optical Materials, 2013, 2(3): 214-219
    [24] WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3(12): 6517-6525 doi: 10.1039/C5TA00303B
    [25] LIANG C, GOU Y, WU L, et al. Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation[J]. Journal of Physical Chemistry C, 2016, 120(24): 12967-12973 doi: 10.1021/acs.jpcc.6b04721
    [26] GUO X, DENG Y, GU D, et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites[J]. Journal of Materials Chemistry, 2009, 19(37): 6706-6712 doi: 10.1039/b910606e
    [27] ZHAO B, SHAO G, FAN B, et al. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure[J]. Physical Chemistry Chemical Physics, 2014, 17(4): 2531-2539
    [28] 李建华, 张超, 王晓辉. 三元层状可加工导电MAX相陶瓷研究进展[J]. 现代技术陶瓷, 2017, 38(1): 3-20

    LI J H, ZHANG C, WANG X H. Progress in machinable and electrically conductive laminated ternary ceramics (MAX phases) [J]. Advanced Ceramics, 2017, 38(1): 3-20.)
    [29] TAN Y, LUO H, ZHANG H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics[J]. Scripta Materialia, 2017, 134: 47-51 doi: 10.1016/j.scriptamat.2017.02.043
    [30] SHI Y, LUO F, LIU Y, et al. Preparation and microwave absorption properties of Ti3AlC2 synthesized by pressureless sintering TiC/Ti/Al[J]. International Journal of Applied Ceramic Technology, 2015, 12(S2): E172-E177
    [31] LI Z, WEI X, LUO F, et al. Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction[J]. Ceramics International, 2014, 40(1): 2545-2549 doi: 10.1016/j.ceramint.2013.07.144
    [32] WANG X, H ZHOU, Y C. Oxidation behavior of TiC-containing Ti3AlC2 based material at 500-900 ℃ in air[J]. Materials Research Innovations, 2003, 7(6): 381-390 doi: 10.1007/s10019-003-0278-7
    [33] LIU Y, LUO F, SU J, et al. Influence of oxidation on the dielectric and microwave absorption properties of the milled Ti3SiC2 powders[J]. Journal of Alloys & Compounds, 2015, 644: 404-410
    [34] LIU Y, LUO F, SU J, et al. Dielectric and microwave absorption properties of Ti3SiC2 /cordierite composite ceramics oxidized at high temperature[J]. Journal of Alloys & Compounds, 2015, 632: 623-628
    [35] WEN Q, ZHOU W, WANG Y, et al. Enhanced microwave absorption of plasma-sprayed Ti3SiC2 /glass composite coatings[J]. Journal of Materials Science, 2017, 52(2): 832-842 doi: 10.1007/s10853-016-0379-5
    [36] STONIER R A,. Stealth aircraft & technology from World War II to the gulf. part ii. applications and design[J]. Sampe Journal, 1991, 27(5): 9-17
    [37] QIN F, BROSSEAU C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111(6): 061301 doi: 10.1063/1.3688435
    [38] ZHANG Y, HUANG Y, CHEN H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon, 2016, 105: 438-447 doi: 10.1016/j.carbon.2016.04.070
    [39] 丁冬海, 罗发, 周万城, 等. 高温雷达吸波材料研究现状与展望[J]. 无机材料学报, 2014, 29(5): 461-469

    DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials, 2014, 29(5): 461-469.)
    [40] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65(12): 124-139
    [41] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3): 788-796 doi: 10.1016/j.carbon.2009.10.028
    [42] CAO W Q, WANG X X, YUAN J, et al. Temperature dependent microwave absorption of ultrathin graphene composites[J]. Journal of Materials Chemistry C, 2015, 3(38): 10017-10022 doi: 10.1039/C5TC02185E
    [43] QING Y C, WEN Q L, LUO F, et al. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band[J]. Journal of Materials Chemistry C, 2016, 4(22): 4853-4862 doi: 10.1039/C6TC01163B
    [44] HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20038-20045
    [45] WU G, CHENG Y, QIAN X, et al. Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Materials Letters, 2015, 144(1): 157-160
    [46] MA C, ZHAO B, DAI Q, et al. Porous structure to improve microwave absorption properties of lamellar ZnO[J]. Advanced Powder Technology, 2016, 28(2): 438-442
    [47] ZHAO B, FAN B, XU Y, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26217
    [48] WANG Y, LUO F, ZHANG L, et al. Microwave dielectric properties of Al-doped ZnO powders synthesized by coprecipitation method[J]. Ceramics International, 2013, 39(8): 8723-8727 doi: 10.1016/j.ceramint.2013.04.056
    [49] XU H, SUN W, QIU X, et al. Structural, magnetic and microwave absorption properties of Ni-doped ZnO nanofibers[J]. Journal of Materials Science Materials in Electronics, 2016, 28(3): 2803-2811
    [50] XIA T, CAO Y H, OYLER N A, et al. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10407-10413
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (5022) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return