Volume 38 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
Lei ZHANG, Linrong ZHUO, Guiping TANG, Bo SONG, Yusheng SHI. Additive Manufacture of Metamaterials: a Review[J]. Journal of Aeronautical Materials, 2018, 38(3): 10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
Citation: Lei ZHANG, Linrong ZHUO, Guiping TANG, Bo SONG, Yusheng SHI. Additive Manufacture of Metamaterials: a Review[J]. Journal of Aeronautical Materials, 2018, 38(3): 10-19. 10.11868/j.issn.1005-5053.2018.001009

Additive Manufacture of Metamaterials: a Review

doi: 10.11868/j.issn.1005-5053.2018.001009
  • Received Date: 2018-04-04
  • Rev Recd Date: 2018-04-12
  • Available Online: 2018-04-24
  • Publish Date: 2018-06-01
  • As a novel structural material proposed by topology optimization, metamaterials present unusual properties, such as negative Poisson’s ratio, negative indexofrefraction and so on. Metamaterials have potential application in the aspect of wave controlling and stealth. Therefore, it has aroused great interests in the world. Additive manufacturing technology, also called 3D printing technology, is suitable to make structures with complicated geometries. It is a high geometric freedom to fabricate stealth metamaterials via additive manufacturing technology, which provides technical support for the wide applications. The design of structure and the theory of stealth are both mentioned based on the basic theory of metamaterial. Moreover, a variety of additive manufacturing processes for the preparation of stealth metamaterials, such as light curing method, fusion deposition method, laser selective sintering / melting method are described in detail in the present paper. Problems, for instance, the staircase effect, raw material adhesion, thermal diffusivity, dimensional accuracy and roughness occurred in the fabrication of additive manufacturing metamaterials are discussed in order to provide references for the follow-up researchers.

     

  • loading
  • [1] KARPOVE G. Structural metamaterials with Saint-Venant edge effect reversal[J]. Acta Materialia, 2017, 123: 245-254 doi: 10.1016/j.actamat.2016.10.046
    [2] MOITRA P, YANG Y, ANDERSON Z, et al. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 2013, 7(10): 791-795 doi: 10.1038/nphoton.2013.214
    [3] LIU C, YANG B, JING L, et al. Equivalent energy level hybridization approach for high-performance metamaterials design[J]. Acta Materialia, 2017, 135: 144-149 doi: 10.1016/j.actamat.2017.06.032
    [4] ZHAO Y, SHI J, SUN L, et al. Alignment-free three-dimensional optical metamaterials[J]. Advanced Materials, 2014, 26(9): 1439 doi: 10.1002/adma.201304379
    [5] 礼嵩明, 蒋诗才, 望咏林, 等. " 超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14 doi: 10.11868/j.issn.1001-4381.2016.000152

    LI S M, JIANG S C, WANG Y L, et al. Study on " metamaterial” structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11): 10-14.) doi: 10.11868/j.issn.1001-4381.2016.000152
    [6] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7): 119-128

    YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7): 119-128.)
    [7] 张勇, 张斌珍, 段俊萍, 等. 超材料在完美吸波器中的应用[J]. 材料工程, 2016, 44(11): 120-128 doi: 10.11868/j.issn.1001-4381.2016.11.020

    ZHANG Y, ZHANG B Z, DUAN J P, et al. Application of metamaterial in perfect absorber[J]. Journal of Materials Engineering, 2016, 44(11): 120-128.) doi: 10.11868/j.issn.1001-4381.2016.11.020
    [8] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402 doi: 10.1103/PhysRevLett.100.207402
    [9] TANG B, ZHU Y, ZHOU X, et al. Wide-angle polarization-independent broadband absorbers based on concentric multi-split ring arrays[J]. IEEE Photonics Journal, 2017, PP(99): 1-1
    [10] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114 doi: 10.1109/LPT.2013.2289299
    [11] CHAURASIYA D, GHOSH S, BHATTACHARYYA S, et al. Compact multi-band polarisation-insensitive metamaterial absorber[J]. Iet Microwaves Antennas & Propagation, 2016, 10(1): 94-101
    [12] LANDY N I, BINGHAM C M, TYLER T, et al. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B: Condensed Matter & Materials Physics, 2009, 79(12): 13
    [13] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76 doi: 10.3969/j.issn.1003-501X.2017.01.006

    TIAN X Y, YIN L X, LI D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76.) doi: 10.3969/j.issn.1003-501X.2017.01.006
    [14] CHENG Q, CUI T J, JIANG W X, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. 11
    [15] YIN M, TIAN X Y, WU L L, et al. A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure[J]. Optics Express, 2013, 21(16): 19082-90. 16 doi: 10.1364/OE.21.019082
    [16] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780 doi: 10.1126/science.1125907
    [17] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777 doi: 10.1126/science.1126493
    [18] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-80 doi: 10.1126/science.1133628
    [19] LI J, PENDRY J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901 doi: 10.1103/PhysRevLett.101.203901
    [20] YIN M, TIAN X Y, HAN H X, et al. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime[J]. Applied Physics Letters, 2012, 100(12): 1780
    [21] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1(3): 21
    [22] LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366 doi: 10.1126/science.1166949
    [23] MILTON G W, CHERKAEV A V. Which elasticity tensors are realizable?[J]. Journal of Engineering Materials & Technology, 1995, 117(4): 483-493
    [24] BUCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(5): 4130
    [25] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Acoustic cloaking using layered pentamode materials[J]. Journal of the Acoustical Society of America, 2010, 127(5): 2856 doi: 10.1121/1.3365248
    [26] NORRIS A N, NAGY A J. Acoustic metafluids made from three acoustic fluids[J]. Journal of the Acoustical Society of America, 2010, 128(4): 1606 doi: 10.1121/1.3479022
    [27] GOKHALE N H, CIPOLLA J L, NORRIS A N. Special transformations for pentamode acoustic cloaking[J]. Journal of the Acoustical Society of America, 2012, 132(4): 2932-2941 doi: 10.1121/1.4744938
    [28] NORRIS A N. Acoustic cloaking theory[J]. Proceedings Mathematical Physical & Engineering Sciences, 2008, 464(2097): 2411-2434
    [29] NORRIS A N. Acoustic metafluids[J]. Journal of the Acoustical Society of America, 2009, 125(2): 839 doi: 10.1121/1.3050288
    [30] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22): 333-113
    [31] BUCKMANN T, STENGER N, KADIC M, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710 doi: 10.1002/adma.v24.20
    [32] KADIC M, BUCKMANN T, STENGER N. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters, 2012, 100(19): 1780
    [33] MARTIN A, KADIC M, SCHITTNY R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B:Condensed Matter, 2012, 86(15): 4172-4181
    [34] KADIC M, BUCKMANN T, SCHITTNY R, et al. On anisotropic versions of three-dimensional pentamode metamaterials[J]. New Journal of Physics, 2013, 15(2): 023029 doi: 10.1088/1367-2630/15/2/023029
    [35] BUCKMANN T, SCHITTNY R, THIEL M, et al. On three-dimensional dilational elastic metamaterials[J]. Physics, 2014, 16(3): 033032
    [36] BUCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(5): 4130
    [37] KADIC M, BUCKMANN T, SCHITTNY R, et al. Metamaterials beyond electromagnetism[J]. Reports on Progress in Physics Physical Society, 2013, 76(12): 126501 doi: 10.1088/0034-4885/76/12/126501
    [38] MEJICA G F, LANTADA A D. Comparative study of potential pentamodal metamaterials inspired by Bravais lattices[J]. Smart Materials & Structures, 2013, 22(11): 1500-1503
    [39] SCHITTNY R, BUCKMANN T, KADIC M, et al. Elastic measurements on macroscopic three-dimensional pentamode metamaterials[J]. Applied Physics Letters, 2013, 103(23): 483
    [40] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Broadband optimization of a pentamode-layered spherical acoustic waveguide[J]. Wave Motion, 2011, 48(6): 505-514 doi: 10.1016/j.wavemoti.2011.02.007
    [41] 张向东, 陈虹, 王磊, 等. 圆柱形分层五模材料声学隐身衣的理论与数值分析[J]. 物理学报, 2015, 64(13): 198-205

    ZHANG X D, CHEN H, WANG L, et al. Theoretical and numerical analysis of layered cylindricalpentamode acoustic cloak[J]. Acta Physica Sinica, 2015, 64(13): 198-205.)
    [42] LAYMAN C N, NAIFY C J, MARTIN T P, et al. Highly anisotropic elements for acoustic pentamode applications[J]. Physical Review Letters, 2013, 111(2): 024302 doi: 10.1103/PhysRevLett.111.024302
    [43] ZHAO A, ZHAO Z, ZHANG X, et al. Design and experimental verification of a water-like pentamode material[J]. Applied Physics Letters, 2017, 110(1): 011907 doi: 10.1063/1.4973924
    [44] CAI X, WANG L, ZHAO Z, et al. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters[J]. Applied Physics Letters, 2016, 109(13): 791-113
    [45] HEDAYATI R, LEEFLANG A M, ZADPOOR A A. Additively manufactured metallic pentamode meta-materials[J]. Applied Physics Letters, 2017, 110(9): 4782-4810
    [46] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18): 27-39

    MEI Z L, ZHANG L, CUI T J. Recent advances on metamaterials[J]. Science & Technology Review, 2016, 34(18): 27-39.)
    [47] TORRENT D, SCANCHEZ-DEHESA J. Acoustic cloaking in two dimensions: a feasible approach[J]. New Journal of Physics, 2008, 10(6): 063015 doi: 10.1088/1367-2630/10/6/063015
    [48] NORRIS A N. Acoustic metafluid[J]. Journal of the Acoustical Society of America, 2008, 125(2): 839
    [49] DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506-4 doi: 10.1063/1.3692178
    [50] XIAO Q J, WANG L, WU T, et al. Research on layered design of ring-shaped acoustic cloaking using bimode metamaterial[J]. Applied Mechanics and Materials, 2014, 687-691: 4399-4404 doi: 10.4028/www.scientific.net/AMM.687-691
    [51] ZHOU F, BAO Y, CAO W, et al. Hiding a realistic object using a broadband terahertz invisibility cloak[J]. Scientific Reports, 2011, 1(4): 78
    [52] URZHUMOV Y, LANDY N, DRISCOLL T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Optics Letters, 2013, 38(10): 1606-8 doi: 10.1364/OL.38.001606
    [53] ZHOU D, HUANG X, DU Z. Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 133-136
    [54] AHN D, KIM H, LEE S. Surface roughness prediction using measured data and interpolation in layered manufacturing[J]. Journal of Materials Processing Technology, 2009, 209(2): 664-671 doi: 10.1016/j.jmatprotec.2008.02.050
    [55] YAN C, HAO L, HUSSEIN A, et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting[J]. Materials & Design, 2014, 55(6): 533-541
    [56] FORMANOIR C D, SUARD M, DENDIEVEL R, et al. Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching[J]. Additive Manufacturing, 2016, 11: 71-76 doi: 10.1016/j.addma.2016.05.001
    [57] 刘彦涛, 张永忠, 陈以强, 等. 激光熔化沉积TA15+Ti2AlNb合金的组织与力学性能[J]. 航空材料学报, 2017, 37(3): 61-67

    LIU Y T, ZHANG Y Z, CHEN Y Q, et al. Microstructure and mechanical properties of laser melting deposited TA15+Ti2AlNb alloys[J]. Journal of Aeronautical Materials, 2017, 37(3): 61-67.)
    [58] YAN C, HAO L, HUSSEIN A, et al. Evaluations of cellular lattice structures manufactured using selective laser melting[J[J]. International Journal of Machine Tools & Manufacture, 2012, 62(1): 32-38
    [59] 刘锦辉, 刘邦涛, 谢雪冬, 等. 高功率光纤激光熔化成形IN718的工艺及性能[J]. 航空材料学报, 2015, 35(4): 1-7

    LIU J H, LIU B T, XIE X D, et al. Process and properties of IN718 formed by high-power fiber laser melting[J]. Journal of Aeronautical Materials, 2015, 35(4): 1-7.)
    [60] 闫春洋, 王琳, 王东源, 等. 激光熔覆制备TC4基复合药型罩材料的力学性能[J]. 航空材料学报, 2017, 37(3): 68-72

    YAN C Y, WANG L, WANG D Y, et al. Mechanical properties of TC4 matrix composites prepared by laser cladding[J]. Journal of Aeronautical Materials, 2017, 37(3): 68-72.)
    [61] BAEL S V, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Materials Science & Engineering: A, 2011, 528(24): 7423-7431
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (7962) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return