Volume 39 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Xiaopeng WANG, Fantao KONG. Resent development in high-entropy alloys and other high-entropy materials[J]. Journal of Aeronautical Materials, 2019, 39(6): 1-19. doi: 10.11868/j.issn.1005-5053.2019.000170
Citation: Xiaopeng WANG, Fantao KONG. Resent development in high-entropy alloys and other high-entropy materials[J]. Journal of Aeronautical Materials, 2019, 39(6): 1-19. 10.11868/j.issn.1005-5053.2019.000170

Resent development in high-entropy alloys and other high-entropy materials

doi: 10.11868/j.issn.1005-5053.2019.000170
  • Received Date: 2019-09-04
  • Rev Recd Date: 2019-11-06
  • Available Online: 2019-11-14
  • Publish Date: 2019-12-01
  • High-entropy (HE) materials are defined as novel multi-principal materials that contain several principal elements (usually ≥ 5) in an (equa) equi-molar ratio, and the design concept of HE materials introduces a new way to improve the properties of materials. Due to their unique crystallographic structure characteristics, HE materials show many different characteristics of microstructures and properties compared with conventional materials .The HE materials have great potential applications in many fields. At present, many kinds of high-entropy materials were prepared with excellent properties in mechanics, physics or chemistry, such as high strength and elongation, distinguished thermal stability, wear resistance, magnetic, conductivity and corrosion resistance. This paper reviews the recent research and development of high-entropy alloys, high-entropy ceramics and high-entropy intermetallics, and summarizes their structure characteristics, microstructures, properties and strengthening mechanisms. In the future, high throughput calculation and preparation will be an important and fast way to design this kind of multi-component materials. With the development of materials, the forming and processing technologies of high entropy materials will develop rapidly to meet their diversified application needs.

     

  • loading
  • [1] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372

    LU Z P,LEI Z F,HUANG H L,et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica,2018,54(11):1553-1566.) doi: 10.11900/0412.1961.2018.00372
    [2] ZHANG Y,ZUO T T,TANG Z,et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001
    [3] YANG T,ZHAO Y L,TONG Y,et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science,2018,362:933-937. doi: 10.1126/science.aas8815
    [4] MIRACLE D B,SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia,2017,122:448-511. doi: 10.1016/j.actamat.2016.08.081
    [5] CANTOR B,CHANG I T H,KNIGHT P,et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A,2004,375/376/377:213-218.
    [6] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [7] YEH J W. Recent progress in high-entropy alloys[J]. Annales De Chimie-Science des Materiaux,2006,31:633-648. doi: 10.3166/acsm.31.633-648
    [8] YEH J W. Alloy design strategies on high-entropy alloys[J]. JOM,2013,65(12):1759-1771. doi: 10.1007/s11837-013-0761-6
    [9] ZHOU Y J,ZHANG Y,WANG Y L,et al. Microstructure and compressive properties of multicomponent Al x(TiVCrMnFeCoNiCu)100- x high-entropy alloys[J]. Materials Science and Engineering:A,2007,454/455:260-265. doi: 10.1016/j.msea.2006.11.049
    [10] MIAO J,SLONE C E,SMITH T M,et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater,2017,132:35-48. doi: 10.1016/j.actamat.2017.04.033
    [11] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [12] DING Q Q,ZHANG Y,CHEN X,et al. Tuning element distribution,structure and properties by composition in high-entropy alloys[J]. Nature,2019,574:223-227. doi: 10.1038/s41586-019-1617-1
    [13] ZHANG Y,ZUO T T,CHENG Y Q,et al. High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J]. Scientific Reports,2013,3:1-7.
    [14] CHUANG M H,TSAI M H,WANG W R,et al. Microstructure and wear behavior of Al xCo1.5CrFeNi1.5Ti y high-entropy alloys[J]. Acta Mater,2011,59(16):6308-6317. doi: 10.1016/j.actamat.2011.06.041
    [15] JIANG S , HU T,GILD J. A new class of high-entropy perovskite oxides[J]. Scripta Materialia,2018:142:116-120.
    [16] TSAI M H. Physical properties of high entropy alloys[J]. Entropy,2013,15:5338-5345. doi: 10.3390/e15125338
    [17] 梁秀兵,魏敏,程江波,等. 高熵合金新材料的研究进展[J]. 材料工程,2009(12):75-79. doi: 10.3969/j.issn.1001-4381.2009.04.018

    LIANG X B,WEI M,CHENG J B,et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engneering,2009(12):75-79.) doi: 10.3969/j.issn.1001-4381.2009.04.018
    [18] TONG C J,CHEN Y L,CHE S K,et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A,2005,36(4):881-893.
    [19] ZHANG Y,ZHOU Y J,LIN J P,et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials,2008,10(6):534-538. doi: 10.1002/adem.200700240
    [20] GUO S,NG C,LU J,et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics,2011,109:10350.
    [21] YEH J W,CHEN S K,GAN J Y,et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A,2004,35(8):2533-2536.
    [22] OTTO F,YANG Y,BEI H,et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia,2013,61(7):2628-2638. doi: 10.1016/j.actamat.2013.01.042
    [23] WANG W R,WANG W L,YEH J W. Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds,2014,589:143-152. doi: 10.1016/j.jallcom.2013.11.084
    [24] TSAIA M H,YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters,2014,2(3):107-123. doi: 10.1080/21663831.2014.912690
    [25] TSAI C W,TSAI M H,YEHA J W,et al. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy[J]. Journal of Alloys and Compounds,2010,490:60-165.
    [26] HEMPHILL M A,YUAN T,WANG G Y,et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J]. Acta Materialia,2012,60:5723-5734. doi: 10.1016/j.actamat.2012.06.046
    [27] CHEN S T,TANG W Y,KUO Y F,et al. Microstructure and properties of age-hardenable Al xCrFe1.5MnNi0.5 alloys[J]. Materials Science and Engineering:A,2010,527:5818-5825. doi: 10.1016/j.msea.2010.05.052
    [28] HE J Y,LIU W H,WANG H,et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia,2014,62:105-113. doi: 10.1016/j.actamat.2013.09.037
    [29] MA S G,ZHANG Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering:A,2012,532:480-486. doi: 10.1016/j.msea.2011.10.110
    [30] ZHANG Y,YANG X,LIAW P K. Alloy design and properties optimization of high entropy alloys[J]. JOM,2010,64:830-838.
    [31] YANG X,ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater Chem Phys,2012,132:233-238. doi: 10.1016/j.matchemphys.2011.11.021
    [32] CHEN R R,QIN G,ZHENG H T,et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J]. Acta Materialia,2018,144:129-137. doi: 10.1016/j.actamat.2017.10.058
    [33] 魏耀光,郭刚,李静,等. 难熔高熵合金在航空发动机上的应用[J]. 航空材料学报,2019,39(5):82-93.

    WEI Y G,GUO G,LI J,et al. Application of refractory high entropy alloys on aero-engines[J]. Journal of Aeronautical Materials,2019,39(5):82-93.)
    [34] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19:698-706. doi: 10.1016/j.intermet.2011.01.004
    [35] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds,2011,509:6043-6048. doi: 10.1016/j.jallcom.2011.02.171
    [36] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system:Microstructure and phase analysis[J]. Acta Materialia,2013,61:1545-1557. doi: 10.1016/j.actamat.2012.11.032
    [37] SENKOV O N,SENKOVA S V,MIRACLE D B,et al. Mechanical properties of low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science & Engineering:A,2013,565:51-62.
    [38] WU Y D,CAI Y H,WANG T,et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277-280. doi: 10.1016/j.matlet.2014.05.134
    [39] HAN Z D,CHEN N,ZHAO S F,et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics,2017,84:153-157. doi: 10.1016/j.intermet.2017.01.007
    [40] GORR B,AZIM M,CHRIST H J,et al. Phase equilibria,microstructure,and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds,2015,624:270-278. doi: 10.1016/j.jallcom.2014.11.012
    [41] STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters,2015,142:153-155. doi: 10.1016/j.matlet.2014.11.162
    [42] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia,2014,68:214-228. doi: 10.1016/j.actamat.2014.01.029
    [43] YURCHENKO N Y,STEPANOV N D,SHAYSULTANOV D G,et al. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0;0.25;0.5;1) high-entropy alloys[J]. Materials Characterization,2016,121:25-134.
    [44] LIN C M,JUAN C C,CHANG C H,et al. Effect of Al addition on mechanical properties and microstructure of refractory Al xHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds,2015,624:100-107. doi: 10.1016/j.jallcom.2014.11.064
    [45] LEI Z F,LIU X J,WU Y,et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature,2018,563:546-550. doi: 10.1038/s41586-018-0685-y
    [46] YEH A C,TSAO T K,CHANG Y J,et al. Developing new type of high temperature alloys–high entropy superalloys[J]. International Journal of Metallurgical & Materials Engineering,2015,1:107-120.
    [47] HE J Y,WANG H,HUANG H L,et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016,102:187-196. doi: 10.1016/j.actamat.2015.08.076
    [48] QIN G,CHEN R R,LIAW P K,et al. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates[J]. Scripta Materialia,2019,172:51-55. doi: 10.1016/j.scriptamat.2019.07.008
    [49] SHUN T T,DU Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy[J]. Journal of Alloys and Compounds,2009,478:269-272. doi: 10.1016/j.jallcom.2008.12.014
    [50] SHUN T T,HUNG C H,LEE C F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ℃[J]. Journal of Alloys and Compounds,2010,495:55-58. doi: 10.1016/j.jallcom.2010.02.032
    [51] TSAO T K,YEH A C,KUO C M,et al. The high temperature tensile and creep behaviors of high entropy superalloy[J]. Scientific Reports,2017,7(1):12658. doi: 10.1038/s41598-017-13026-7
    [52] SENKOV O N,ISHEIM D,SEIDMAN D N,et al. Development of a refractory high entropy superalloy[J]. Entropy,2016,18:102-114. doi: 10.3390/e18030102
    [53] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design,2018,139:495-511.
    [54] WANG Q,MA Y,JIANG B B,et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Materialia,2016,120:85-89. doi: 10.1016/j.scriptamat.2016.04.014
    [55] GUO S,NG C,LIU C T,et al. Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys[J]. Journal of Alloys and Compounds,2013,557:77-81. doi: 10.1016/j.jallcom.2013.01.007
    [56] LU Y P,DONG Y,GUO S,et al. A promising new class of high-temperature alloys:eutectic high-entropy alloys[J]. Scientific Reports,2014,4:6200.
    [57] LU Y P,GAO X Z,JIANG L,et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature rang[J]. Acta Materialia,2017,124:143-150. doi: 10.1016/j.actamat.2016.11.016
    [58] GAO X Z,LU Y P,ZHANG B,et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia,2017,141:59-66. doi: 10.1016/j.actamat.2017.07.041
    [59] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Research Letters,2016,4(3):174-179. doi: 10.1080/21663831.2016.1160451
    [60] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science & Engineering:A,2016,675:99-109.
    [61] BHATTACHARJEE T,WANI I S,SHEIKH S,et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing[J]. Scientific Reports,2018,8:3276. doi: 10.1038/s41598-018-21385-y
    [62] LU Y P,JIANG H,GUO S,et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics,2017,91:124-128. doi: 10.1016/j.intermet.2017.09.001
    [63] ROGAL Ł,MORGIEL J,ŚWIĄTEK Z,et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Materials Science & Engineering:A,2016,651:590-597.
    [64] TAN Y M,LI J S,WANG J,et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy[J]. Intermetallics,2017,85:74-79. doi: 10.1016/j.intermet.2017.02.004
    [65] HE F,WANG Z J,CHENG P,et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds,2016,656:284-289. doi: 10.1016/j.jallcom.2015.09.153
    [66] HE F,WANG Z J,NIU S Z,et al. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate[J]. Journal of Alloys and Compounds,2016,667:53-57. doi: 10.1016/j.jallcom.2016.01.153
    [67] MA L Q,WANG L M,ZHANG T,et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe,Co,Ni) alloys[J]. Materials Transactions,2002,43(2):277-280. doi: 10.2320/matertrans.43.277
    [68] GUO S,HU Q,NG C,et al. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase[J]. Intermetallics,2013,41:96-103. doi: 10.1016/j.intermet.2013.05.002
    [69] WANG W H. High-entropy metallic glasses[J]. JOM,2014,66(10):2067-2077. doi: 10.1007/s11837-014-1002-3
    [70] HUO J T,HUO L S,LI J W,et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics,2015,117(7):073902.
    [71] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys-fundamentals and applications[M]. AG Switzerland: Springer International Publishing, 2016: 445-469.
    [72] QI T L,LI Y H,TAKEUCHI A,et al. Soft magnetic Fe25Co25Ni25(B,Si)25 high entropy bulk metallic glasses[J]. Intermetallics,2015,66:8-12. doi: 10.1016/j.intermet.2015.06.015
    [73] TAKEUCHI A,AMIYA K,WADA T,et al. Entropies in alloy design for high-entropy and bulk glassy alloys[J]. Entropy,2013,15(9):3810-3821.
    [74] GAO X Q,ZHAO K,KE H B,et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids,2011,357:3557-3560. doi: 10.1016/j.jnoncrysol.2011.07.016
    [75] TAKEUCHI A,CHEN N,WADA T,et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics,2011,19(10):1546-1554. doi: 10.1016/j.intermet.2011.05.030
    [76] DING H,YAO K. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids,2013,364:9-12. doi: 10.1016/j.jnoncrysol.2013.01.022
    [77] LI H F,XIE X H,ZHAO K,et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia,2013,9:8561-8573. doi: 10.1016/j.actbio.2013.01.029
    [78] DING H Y,SHAO Y,GONG P,et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability[J]. Materials Letters,2014,125:151-153. doi: 10.1016/j.matlet.2014.03.185
    [79] XU J,SHANG C Y,GE W J,et al. Effects of elemental addition on the microstructure,thermal stability,and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys[J]. Advanced Powder Technology,2016,27:1418-1426. doi: 10.1016/j.apt.2016.04.037
    [80] MURTY B S, YEH J W, RANGANATHAN S. High-entropy alloys[M]. London: Butterworth-Heinemann, 2014.
    [81] LAI C H,LIN S J,YEH J W,et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface & Coatings Technology,2006,201:3275-3280.
    [82] CHANG H W,HUANG P K,YEH J W,et al. Influence of substrate bias,deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surface & Coatings Technology,2008,202:3360-3366.
    [83] HUANG P K,YEH J W. Inhibition of grain coarsening up to 1000 ℃ in (AlCrNbSiTiV)N superhard coatings[J]. Scripta Mater,2010,62:105-108. doi: 10.1016/j.scriptamat.2009.09.015
    [84] LIN C H,DUH J G,YEH J W,et al. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J]. Surface & Coatings Technology,2007,201:6304-6308.
    [85] TSAI M H,WANG C W,LAI C H,et al. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N x coatings[J]. Journal of Physics D:Applied Physics,2008,41:235402. doi: 10.1088/0022-3727/41/23/235402
    [86] HSIEH M H,TSAI M H,SHEN W J,et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings[J]. Surface & Coatings Technology,2013,221:118-123.
    [87] BRAICA V,BALACEANUA M,BRAIC M,et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205. doi: 10.1016/j.jmbbm.2012.02.020
    [88] MAYRHOFER P H,KIRNBAUER A,ERTELTHALER Ph,et al. High-entropy ceramic thin films:a case study on transition metal diborides[J]. Scripta Materialia,2018,149:93-97. doi: 10.1016/j.scriptamat.2018.02.008
    [89] GILD J,ZHANGY Y,HARRINGTON T,et al. High-entropy metal diborides:a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports,2016,6:37946. doi: 10.1038/srep37946
    [90] ROST C M,SACHET E,BORMAN T,et al. Entropy-stabilized oxides[J]. Nature Communications,2015,6:8485. doi: 10.1038/ncomms9485
    [91] DJENADIC R,SARKAR A,CLEMENS O,et al. Multicomponent equiatomic rare earth oxides[J]. Materials Research Letters,2017,5(2):102-109. doi: 10.1080/21663831.2016.1220433
    [92] WANG Z G,ZHOU W,FU L M,et al. Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy[J]. Materials Science & Engineering:A,2017,696:503-510.
    [93] GWALANI B,SONI V,CHOUDHURI D,et al. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2[J]. Scripta Materialia,2016,123:130-134. doi: 10.1016/j.scriptamat.2016.06.019
    [94] 孔凡涛, 陈玉勇, 王晓鹏. 一种高熵金属间化合物: 201710681712.8[P]. 2017-12-15[2019-11-04].
    [95] 赵宇. L12/B2 型高熵金属间化合物的设计及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHAO Y. Study on design, microstructure and properties of L12/B2-type high-entropy intermetallics[D]. Harbin: Harbin Institute of Technology, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (11652) PDF downloads(1248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return