Volume 40 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
Zhishou ZHU, Guoqiang SHANG, Xinnan WANG, Liwei ZHU, Jing LI, Mingbing LI, Yunpeng XIN, Gechen LIU. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020, 40(3): 1-10. doi: 10.11868/j.issn.1005-5053.2020.000086
Citation: Zhishou ZHU, Guoqiang SHANG, Xinnan WANG, Liwei ZHU, Jing LI, Mingbing LI, Yunpeng XIN, Gechen LIU. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020, 40(3): 1-10. 10.11868/j.issn.1005-5053.2020.000086

Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications

doi: 10.11868/j.issn.1005-5053.2020.000086
  • Received Date: 2020-05-12
  • Rev Recd Date: 2020-05-22
  • Available Online: 2020-05-20
  • Publish Date: 2020-06-01
  • Because of the variety and complexity of solid-state phase transformation characteristics of titanium alloys, the relationship between their microstructure and performance has always been one of the hot topics in the field of titanium alloy materials science. By adjusting the composition, processing technology and heat treatment process parameters of titanium alloys, the microstructure type and parameters of titanium alloy parts can be adjusted to a certain extent to achieve the best matches in strength, plasticity, toughness, fatigue and fatigue crack propagation rate, etc. In this paper, based on the comparison of four typical microstructure characteristics including equiaxed microstructure, bimodal microstructure, lamellar microstructure, basket weave microstructure and their thermo-mechanical controlling technologies, taking the TC21 titanium alloy, TC4-DT titanium alloy, TC32 titanium alloy and TB17 titanium alloy for aviation use as examples to review the properties of strength, plasticity, fracture toughness, fatigue life and fatigue crack propagation rate, which can provide a reference basis for reasonably choosing microstructure parameters, optimizing properties, stabilizing mass production quality of titanium alloy products.

     

  • loading
  • [1] BOYER R,BRIGGS R. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering and Performance,2005,14(6):681-685. doi: 10.1361/105994905X75448
    [2] 曹春晓. 钛合金在大型运输机上的应用[J]. 稀有金属快报,2006(1):17-21.

    CAO C X. Applications of titanium alloys on large transporter[J]. Rare Metals Letters,2006(1):17-21.)
    [3] NYAKANA S,FANNING J,BOYER R. Quick reference guide for β titanium alloys in the 00s[J]. Journal of Materials Engineering and Performance,2005,14(6):799-811. doi: 10.1361/105994905X75646
    [4] 杨 健. 钛合金在飞机上的应用[J]. 航空制造技术,2006(11):41-43.

    YANG J. The application of titanium alloy in aircraft[J]. Aeronautical Manufacturing Technology,2006(11):41-43.)
    [5] IVASISHIN O M,MARKOVSKY P E,MATVIYCHUK Y V,et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloy and Compounds,2007,14:1-14.
    [6] SAUER C,LUETJERING G. Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties[J]. Journal of Materials Processing Technology,2001,117:311-327.
    [7] FURUHARA T,MAKI T,MAKINO T,et al. Microstructure control by thermo mechanical processing in β-Ti-15-3 alloys[J]. Journal of Materials Processing Technology,2001,117:318-323.
    [8] CLEMEN N,LENAIN A. Mechanical property optimization via microstructural control of new metastable beta titanium alloys[J]. Journal of Minerals,2007,59(1):50-53.
    [9] WANG B,LIU Z Q,GAO Y,et al. Microstructural evolution during aging of Ti-10V-2Fe-3Al titanium alloy[J]. Journal of University of Science and Technology,2007(14):335-340.
    [10] 朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京: 航空工业出版社, 2013.

    ZHU Z S. Research and development of new-brand titanium alloys of high performance for aeronautical application[M]. Beijing: Aviation industry press, 2013.
    [11] 冯冉. 热处理对Ti-Al-Sn-Zr-Ta合金组织演变的影响[D]. 西安: 西北工业大学, 2008.

    FENG R. Study of heat treatment on microstructure evolution of Ti-Al-Sn-Zr-Ta alloy[D]. Xi’an: Northwestern Polytechnical University, 2008.
    [12] LINDEMAN J,WAGNER L. Microtextural effects on mechanical properties of duplex microstructures in(α + β)titanium alloys[J]. Materials Science and Engineering:A,1999,263(2):137-141. doi: 10.1016/S0921-5093(98)01172-1
    [13] ZHOU Y G,ZENG W D,YU H Q. An investigation of anew near-beta forging process for titanium alloys and its application in aviation components[J]. Materials Science and Engineering:A,2005,393(1/2):204-212.
    [14] 周义刚,曾卫东,俞汉清. 近β锻造推翻陈旧理论发展了三态组织[J]. 中国工程科学,2001,3(5):61-66. doi: 10.3969/j.issn.1009-1742.2001.05.011

    ZHOU Y G,ZENG W D,YU H Q. The near forging overthrows the conventional forging theory and develops anew tri-modal microstructure[J]. Engineering Science,2001,3(5):61-66.) doi: 10.3969/j.issn.1009-1742.2001.05.011
    [15] 杨合,孙志超,樊晓光,等. 钛合金大型复杂构件等温局部加载近β锻造组织控制研究进展[J]. 航空材料学报,2014,34(4):72-82. doi: 10.11868/j.issn.1005-5053.2014.4.007

    YANG H,SUN Z C,FAN X G,et al. Advances in microstructure control during isothermal forming of Ti-alloy large complex components by near-β local forging[J]. Journal of Aeronautical Materials,2014,34(4):72-82.) doi: 10.11868/j.issn.1005-5053.2014.4.007
    [16] 马超,孙志超,韩飞孝,等. TA15钛合金近β变形三态组织中片状α演化规律[J]. 稀有金属材料与工程,2015,44(7):1661-166.

    MA C,SUN Z C,HAN F X,et al. Evolution mechanism of lamellar α in Tri-modal microstructure of TA15 Ti-alloy during near β deformation[J]. Rare Metal Materials and Engineering,2015,44(7):1661-166.)
    [17] JI Z,YANG H,LI H W. Evolution of two types of α plates in Tri-modal microstructure of TA15 alloy under varying processing conditions[J]. Rare Metal Materials and Engineering,2015,44(3):527-531. doi: 10.1016/S1875-5372(15)30032-1
    [18] 朱知寿,马少俊,王新南,等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究[J]. 钛工业进展,2005,22(6):10-13. doi: 10.3969/j.issn.1009-9964.2005.06.003

    ZHU Z S,MA S J,WANG X N,et al. Study on fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy[J]. Titanium Industry Progress,2005,22(6):10-13.) doi: 10.3969/j.issn.1009-9964.2005.06.003
    [19] 郭萍,赵永庆,洪权,等. 损伤容限型TC4-DT钛合金性能[J]. 稀有金属材料与工程,2013,42(11):2367-2370.

    GUO P,ZHAO Y Q,HONG Q,et al. Properties of damage tolerance TC4-DT titanium alloy[J]. Rare Metal Materials and Engineering,2013,42(11):2367-2370.)
    [20] ZHU L W,ZHU Z S,WANG X N,et al. Influence of lamellar microstructure on fatigue crack propagation behavior of TC4-DT of damage tolerance[J]. Journal of Aeronautical Materials,2011,31(Suppl1):164-167.
    [21] 刘小刚,朱笑林,郭海丁. TC4-DT焊接接头I-II复合型疲劳裂纹扩展实验及模拟研究[J]. 航空材料学报,2020,40(2):661-669.

    LIU X G,ZHU X L,GUO H D. Experimental and simulation study on I-II mixed-mode fatigue crack growth of TC4-DT welded joint[J]. Journal of Aeronautical Materials,2020,40(2):661-669.)
    [22] LIU J L,ZENG W D,SHU Y,et al. Hot working parameters optimization of TC4-DT titanium alloy based on processing maps considering true strain[J]. Rare Metal Materials and Engineering,2016,45(7):1647-1653. doi: 10.1016/S1875-5372(16)30133-3
    [23] 刘诚,董洪波. TC4-DT钛合金β锻动态再结晶元胞自动机模拟[J]. 航空材料学报,2015,35(2):21-27. doi: 10.11868/j.issn.1005-5053.2015.2.003

    LIU C,DONG H B. Cellular automaton simulation of dynamic recrystallization for TC4- DT titanium alloy in β hot process[J]. Journal of Aeronautical Materials,2015,35(2):21-27.) doi: 10.11868/j.issn.1005-5053.2015.2.003
    [24] PENG X N,GUO H Z,SHI Z F,et al. Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermo mechanical treatment[J]. Trans. Nonferrous Met Soc China,2014,24:682-689.
    [25] PENG X N,GUO H Z,WAND T,et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy[J]. Materials Science and Engineering:A,2012,533:55-63. doi: 10.1016/j.msea.2011.11.033
    [26] 杨春林,张松,欧梅桂. 退火工艺对热变形TC21合金组织与性能的影响[J]. 金属热处理,2020,45(3):133-139.

    YANG C L,ZANG S,OU M G. Effect of annealing on microstructure and properties of hot deformed TC21 alloy[J]. Heat Treatment of Metals,2020,45(3):133-139.)
    [27] LI Y F,ZENG X G. Dynamic Tensile behavior and constitutive modeling of TC21 titanium alloy[J]. Journal of Wuhan University of Technology(Mater Sci Ed),2019,34(3):707-716. doi: 10.1007/s11595-019-2107-x
    [28] SHI Z F,GUO H Z,ZHANG J W,et al. Microstructure−fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure[J]. Trans Nonferrous Met Soc China,2018,28:2440-2448.
    [29] HOU Z M,ZHAO Y Q,ZENG W D. Effect of heat treatment on the microstructure development of TC21 alloy[J]. Rare Metal Materials and Engineering,2017,46(8):2087-2091. doi: 10.1016/S1875-5372(17)30184-4
    [30] SHI Z F,GUO H Z,HAN J Y,et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment[J]. Trans Nonferrous Met Soc China,2013,23(10):2882. doi: 10.1016/S1003-6326(13)62810-1
    [31] ZHAO Y L,LI B L,ZHU Z S,et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy[J]. Materials Science and Engineering:A,2010,527(21/22):5360.
    [32] GUO L F,LI B C,ZHANG Z M. Constitutive relationship model of TC21 alloy based on artificial neural network[J]. Trans Nonferrous Met Soc China,2013,23(6):1761. doi: 10.1016/S1003-6326(13)62658-8
    [33] 朱知寿,王新南,商国强,等. 新型高性能钛合金研究与应用[J]. 航空材料学报,2016,36(3):7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002

    ZHU Z S,WANG X N,SHANG G Q,et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials,2016,36(3):7-12.) doi: 10.11868/j.issn.1005-5053.2016.3.002
    [34] 朱知寿,商国强,王新南,等. 低成本高性能钛合金研究进展[J]. 钛工业进展,2012,29(16):1-5.

    ZHU Z S,SHANG G Q,WANG X N,et al. Research and development of low cost and high performance titanium alloys[J]. Titanium Industry Progress,2012,29(16):1-5.)
    [35] 商国强,王新南,费跃,等. 新型低成本钛合金高周疲劳性能和断裂韧度[J]. 失效分析与预防,2013,8(2):74-78. doi: 10.3969/j.issn.1673-6214.2013.02.003

    SHANG G Q,WANG X N,FEI Y,et al. High-cycle fatigue properties and fracture toughness of new low cost titanium alloy[J]. Failure Analysis and Prevention,2013,8(2):74-78.) doi: 10.3969/j.issn.1673-6214.2013.02.003
    [36] 王新南,费跃,刘洲,等. 航空用新型低成本钛合金显微组织与损伤容限性能关系研究[J]. 钛工业进展,2013,30(2):7-10.

    WANG X N,FEI Y,LIU Z,et al. Research of the relationship between microstructure and damage-tolerance property of new low cost titanium alloy in aviation applications[J]. Titanium Industry Progress,2013,30(2):7-10.)
    [37] 费跃,朱知寿,王新南,等. 锻造工艺对新型低成本钛合金组织和性能影响[J]. 稀有金属,2013,37(2):186-191. doi: 10.3969/j.issn.0258-7076.2013.02.003

    FEI Y,ZHU Z S,WANG X N,et al. Influence of forging process on microstructure and mechanical properties of a new low-cost titanium alloy[J]. Chinese Journal of Rare Metals,2013,37(2):186-191.) doi: 10.3969/j.issn.0258-7076.2013.02.003
    [38] SHANG G Q,WANG X N,FEI Y,e t,a l. Experimental study of heat treatment processing to a new low cost titanium alloy used in aviation field[J]. Material Science Forum,2013(747/748):919-925.
    [39] 李明兵,朱知寿,王新南,等. 显微组织对TC32钛合金高周疲劳性能的影响关系研究[J]. 中国有色金属学报,2016,26(9):1886-1892.

    LI M B,ZHU Z S,WANG X N,et al. Influence of microstructure on high cycle fatigue properties of TC32 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(9):1886-1892.)
    [40] 王哲,王新南,祝力伟,等. TB17钛合金等温时效析出行为[J]. 航空材料学报,2016,36(5):1-6. doi: 10.11868/j.issn.1005-5053.2016.5.001

    WANG Z,WANG X N,ZHU L W,et al. Isothermal aging precipitate of TB17 titanium alloy[J]. Journal of Aeronautical Materials,2016,36(5):1-6.) doi: 10.11868/j.issn.1005-5053.2016.5.001
    [41] 刘洪骁,董洪波,王喆鑫,等. TB17钛合金室温变形及时效析出行为[J]. 中国有色金属学报,2019,29(10):2306-2311.

    LIU H X,DONG H B,WANG Z X,et al. Room temperature deformation and aging precipitation behavior of TB17 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2019,29(10):2306-2311.)
    [42] 刘洪骁,董洪波,朱知寿,等. 低温时效及冷/温变形工艺对TB17钛合金组织的影响[J]. 材料热处理学报,2019,40(6):69-74.

    LIU H X,DONG H B,ZHU Z S,et al. Effect of low-temperature aging and cold/warm deformation on microstructure of TB17 titanium alloy[J]. Transaction of Materials and Heat Treatment,2019,40(6):69-74.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (5564) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return