Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
GUO Youjie, LI Jinfeng, LIU Danyang, ZENG Zhuoran, YAN Yuanming, WANG Yuan, QIU Yao, ZHANG Ruifeng. Research progress on dynamic recrystallization behavior of Al-Li alloy[J]. Journal of Aeronautical Materials, 2022, 42(5): 15-31. doi: 10.11868/j.issn.1005-5053.2022.000092
Citation: GUO Youjie, LI Jinfeng, LIU Danyang, ZENG Zhuoran, YAN Yuanming, WANG Yuan, QIU Yao, ZHANG Ruifeng. Research progress on dynamic recrystallization behavior of Al-Li alloy[J]. Journal of Aeronautical Materials, 2022, 42(5): 15-31. 10.11868/j.issn.1005-5053.2022.000092

Research progress on dynamic recrystallization behavior of Al-Li alloy

doi: 10.11868/j.issn.1005-5053.2022.000092
  • Received Date: 2022-06-03
  • Accepted Date: 2022-08-23
  • Rev Recd Date: 2022-09-20
  • Publish Date: 2022-10-11
  • Al-Li alloy has been widely used in aerospace field attribute to the advantages of lower density, higher strength, damage tolerance and corrosion resistance. Dynamic recrystallization phenomena exist in Al-Li alloy during hot deformation. This paper overviews the dynamic recrystallization behavior occurring in hot processing of Al-Li alloy. The research history of dynamic recrystallization is summarized, together with the key factors that influencing the dynamic recrystallization processes including stacking fault energy, grain size, hot processing conditions and secondary particles. The nucleation mechanisms and conditions of discontinuous dynamic recrystallization, continuous dynamic recrystallization and geometric dynamic recrystallization are depicted and analyzed respectively, followed by a discussion on the effects of the forward three dynamic recrystallization mechanisms regarding the mechanical properties and microstructure. Ultimately, the unsolved and challenging scientific and technological issues are highlighted with some aspects desiring further exploration. It is feasible to provide ideas and inspiration for scholars to better comprehend dynamic recrystallization mechanisms during the hot deformation of Al-Li alloy with the assistance of electron backscatter diffraction and transmission electron microscopy characterization methods.

     

  • loading
  • [1] 李劲风,宁红,刘丹阳,等. Al-Cu-Li系铝锂合金的合金化与微合金化[J]. 中国有色金属学报,2021,31(2):258-279. doi: 10.11817/j.ysxb.1004.0609.2021-36619

    LI J F,NING H,LIU D Y,et al. Alloying and micro-alloying in Al-Cu-Li series alloys[J]. The Chinese Journal of Nonferrous Metals,2021,31(2):258-279. doi: 10.11817/j.ysxb.1004.0609.2021-36619
    [2] 李劲风,陈永来,马云龙,等. 国内铝锂合金基础研究及应用技术开发[J]. 宇航材料工艺,2021,51(4):37-47. doi: 10.12044/j.issn.1007-2330.2021.04.005

    LI J F,CHEN Y L,MA Y L,et al. Basic research and application technology development of Al-Li alloy in china[J]. Journal of Aerospace Materials and Technology,2021,51(4):37-47. doi: 10.12044/j.issn.1007-2330.2021.04.005
    [3] RIOJA R J,LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transaction A,2012,43(9):3325-3337. doi: 10.1007/s11661-012-1155-z
    [4] 郑子樵,李劲风,陈志国,等. 铝锂合金的合金化与微观组织演化[J]. 中国有色金属学报,2011,21(10):2337-2351. doi: 10.19476/j.ysxb.1004.0609.2011.10.004

    ZHENG Z Q,LI J F,CHEN Z G,et al. Alloying and microstructural evolution of Al-Li alloys[J]. The Chinese Journal of Nonferrous Metals,2011,21(10):2337-2351. doi: 10.19476/j.ysxb.1004.0609.2011.10.004
    [5] GUO Y J,LI J F,LU D D,et al. Characterization of Al3Zr precipitation via double-step homogenization and recrystallization behavior after subsequent deformation in 2195 Al-Li alloy[J]. Materials Characterization,2021,182:111549. doi: 10.1016/j.matchar.2021.111549
    [6] PAN Z R,ZHENG Z Q,LIAO Z Q,et al. New cubic precipitate in Al-3.5Cu-1.0Li-0.5In (wt. %) alloy[J]. Materials Letters,2010,64:942-944. doi: 10.1016/j.matlet.2010.01.066
    [7] ZHANG X L,WU G H,ZHANG L,et al. Effects of Mg and Sc additions on the microstructure, mechanical properties, and thermal stability of a cast Al-2Li-2Cu-0.2Zr alloy after thermal exposure[J]. Journal of Alloys and Compounds,2019,788:367-382. doi: 10.1016/j.jallcom.2019.02.062
    [8] WANG Y X,MA X W,ZHAO G Q,et al. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization[J]. Journal of Materials Science & Technology,2021,82:161-178.
    [9] 王硕,张弛,王俊升. 铝锂合金纳米析出相结构与性能综述[J]. 航空制造技术,2021,64(9):68-76,92. doi: 10.16080/j.issn1671-833x.2021.09.068

    WANG S,ZHANG C,WANG J S. Structures and properties of nano-precipitates in Al-Li alloys[J]. Aeronautical Manufacturing Technology,2021,64(9):68-76,92. doi: 10.16080/j.issn1671-833x.2021.09.068
    [10] DURSUN T,SOUTIS C. Recent developments in advanced aircraft aluminum alloys[J]. Materials & Design,2014,56:862-871.
    [11] DESCHAMPS A,DECREUS H,GEUSER F D,et al. The influence of precipitation on plastic deformation of Al-Cu-Li alloys[J]. Acta Materialia,2013,61:4010-4021. doi: 10.1016/j.actamat.2013.03.015
    [12] TAO J S,ZHANG L,WU G H,et al. Effect of heat treatment on the microstructure and mechanical properties of extruded Al-4Cu-1Li-0.4Mg-0.4Ag-0.18Zr alloy[J]. Materials Science & Engineering:A,2018,717:11-19.
    [13] XIANG S,LIU D Y,ZHU R H,et al. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25(12):3855-3864. doi: 10.1016/S1003-6326(15)64033-X
    [14] WANG Y X,ZHAO G Q,XU X,et al. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing[J]. Materials Science & Engineering:A,2018,727:78-89.
    [15] MA Y L,LI J F,SANG F J,et al. Grain structure and tensile property of Al-Li alloy sheet caused by different cold rolling reduction[J]. Transactions of Nonferrous Metals Society of China,2019,29(8):1569-1582. doi: 10.1016/S1003-6326(19)65064-8
    [16] ZHU F J,WU H Y,LEE S,et al. Dynamic behavior of a 6069 Al alloy under hot compression[J]. Materials Science & Engineering A,2015,640:385-393.
    [17] HUANG K,LOGé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design,2016,111:548-574.
    [18] SAKAI T,MIURA H,GOLOBORODKO A,et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J]. Acta Materialia,2009,57(1):153-162. doi: 10.1016/j.actamat.2008.09.001
    [19] SAKAI T,BELYAKOV A,KAIBYSHEV R,et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science,2014,60:130-207. doi: 10.1016/j.pmatsci.2013.09.002
    [20] SHEN B,DENG L,WANG X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation[J]. Materials Science & Engineering:A,2015,625:288-295.
    [21] 李旭,杨庆波,樊祥泽,等. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报,2019,55(6):709-719. doi: 10.11900/0412.1961.2018.00430

    LI X,YANG Q B,FAN X Z,et al. Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy[J]. Acta Metallurgica Sinica,2019,55(6):709-719. doi: 10.11900/0412.1961.2018.00430
    [22] WANG Y X,ZHAO G Q. Hot extrusion processing of Al-Li alloy profiles and related issues: a review[J]. Chinese Journal of Mechanical Engineering,2020,33(1):1-24. doi: 10.1186/s10033-019-0427-6
    [23] CRAM D G,ZUROB H S,BRECHET Y J M,et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation[J]. Acta Materialia,2009,57(17):5218-5228. doi: 10.1016/j.actamat.2009.07.024
    [24] CAO Z H,SUN Y,ZHOU C,et al. Cellular automaton simulation of dynamic recrystallization behavior in V-10Cr-5Ti alloy under hot deformation conditions[J]. Transactions of Nonferrous Metals Society of China,2019,29(1):98-111. doi: 10.1016/S1003-6326(18)64919-2
    [25] WANG Y X,ZHAO G Q,XU X,et al. Constitutive modeling, processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195[J]. Journal of Alloys and Compounds,2019,779:735-751. doi: 10.1016/j.jallcom.2018.11.289
    [26] SUN Z C,WU H L,CAO J,et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method[J]. International Journal of Plasticity,2018,106:73-87. doi: 10.1016/j.ijplas.2018.03.002
    [27] CSANáDI T,CHINH N Q,GUBICZA J,et al. Characterization of stress-strain relationships in Al over a wide range of testing temperatures[J]. International Journal of Plasticity,2014,54:178-192. doi: 10.1016/j.ijplas.2013.08.014
    [28] MCQUEEN H J,JONAS J J. Recovery and recrystallization during high temperature deformation[J]. Treatise on Materials Science and Technology,1975,6:393-493.
    [29] MCQUEEN H J. Development of dynamic recrystallization theory[J]. Materials Science & Engineering:A,2004,387-389:203-208.
    [30] ZHU R H,LIU Q,LI J F,et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. Journal of Alloys and Compounds,2015,650:75-85. doi: 10.1016/j.jallcom.2015.07.182
    [31] ZHANG J J,YI Y P,HUANG S Q,et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Materials Science & Engineering:A,2021,804:140650.
    [32] GUO Y J,LI J F,LU D D,et al. Effects of dynamic precipitation and processing parameters on dynamic recrystallization behavior of 2195 Al-Cu-Li alloy during hot compression[J]. Journal of Materials Engineering and Performance,2022,31:2743-2760. doi: 10.1007/s11665-021-06390-z
    [33] LI Y B,GU B,JIANG S,et al. A CDRX-based material model for hot deformation of aluminium alloys[J]. International Journal of Plasticity,2020,134:102844. doi: 10.1016/j.ijplas.2020.102844
    [34] CHEN S F,LI D Y,ZHANG S H,et al. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach[J]. International Journal of Plasticity,2020,131:102710. doi: 10.1016/j.ijplas.2020.102710
    [35] YANG Q B,WANG X Z,LI X,et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression[J]. Materials Characterization,2017,131:500-507. doi: 10.1016/j.matchar.2017.06.001
    [36] DOHERTY R D,HUGHES D A,HUMPHREYS F J,et al. Current issues in recrystallization: a review[J]. Materials Science & Engineering:A,1997,238(2):219-274.
    [37] NING J,LI Q,ZOU Z Y,et al. Hot tensile deformation behavior and microstructural evolution of 2195 Al-Li alloy[J]. Vacuum,2021,188:110176. doi: 10.1016/j.vacuum.2021.110176
    [38] NAYAN N,MAHESH S,PRASAD M J N V,et al. A phenomenological hardening model for an aluminium-lithium alloy[J]. International Journal of Plasticity,2019,118:215-232. doi: 10.1016/j.ijplas.2019.02.009
    [39] ZHU R H,LIU Q,LI J F,et al. Flow curve correction and processing map of 2050 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China,2018,28(3):404-414. doi: 10.1016/S1003-6326(18)64674-6
    [40] ZHAO P Y,LOW T S E,WANG Y Z,et al. An integrated full-field model of concurrent plastic deformation and microstructure evolution: application to 3D simulation of dynamic recrystallization in polycrystalline copper[J]. International Journal of Plasticity,2016,80:38-55. doi: 10.1016/j.ijplas.2015.12.010
    [41] LI Q,NING J,CHEN L,et al. The mechanical response and microstructural evolution of 2195 Al-Li alloy during hot tensile deformation[J]. Journal of Alloys and Compounds,2020,848:156515. doi: 10.1016/j.jallcom.2020.156515
    [42] ZHANG J J,YI Y P,HE H L,et al. Kinetic model for describing continuous and discontinuous dynamic recrystallization behaviors of 2195 aluminum alloy during hot deformation[J]. Materials Characterization,2021,181:111492. doi: 10.1016/j.matchar.2021.111492
    [43] RAAB G J,VALIEV R Z,LOWE T C,et al. Continuous processing of ultrafine grained Al by ECAP-Conform[J]. Materials Science & Engineering:A,2004,382(1/2):30-34.
    [44] BECK P A,SPERRY P R. Strain induced grain boundary migration in high purity aluminum[J]. Journal of applied physics,1950,21(2):150-152. doi: 10.1063/1.1699614
    [45] ZENER C,HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32. doi: 10.1063/1.1707363
    [46] LI Y P,ONODERA E,MATSUMOTO H,et al. Correcting the stress-strain curve in hot compression process to high strain level[J]. Metallurgical and Materials Transactions A,2009,40(5):982-990.
    [47] PANTLEON W,FRANCKE D,KLIMANEK P. Modelling adiabatic heating during high-speed deformation[J]. Computational Materials Science,1996,7(1):75-81.
    [48] WRIGHT S I,NOWELL M M,FIELD D P. A review of strain analysis using electron backscatter diffraction[J]. Microscopy & Microanalysis,2011,17(3):316-329.
    [49] FAN G H,ZHANG Y B,DRIVER J H,et al. Oriented growth during recrystallization revisited in three dimensions[J]. Scripta Materialia,2014,72-73:9-12. doi: 10.1016/j.scriptamat.2013.09.031
    [50] ZAAFARANI N,RAABE D,SINGH R N,et al. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations[J]. Acta Materialia,2006,54(7):1863-1876. doi: 10.1016/j.actamat.2005.12.014
    [51] LU W J,LIEBSCHER C H,YAN F K,et al. Interfacial nanophases stabilize nanotwins in high-entropy alloys[J]. Acta Materialia,2020,185:218-232. doi: 10.1016/j.actamat.2019.12.010
    [52] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 第三版. 上海: 上海交通大学出版社, 2010.

    HU G X, CAI X, RONG Y H. Fundamentals of materials science [M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010.
    [53] SHANG S L,ZACHERL C L,FANG H Z,et al. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys[J]. Journal of Physics Condensed Matter,2012,24(50):505403. doi: 10.1088/0953-8984/24/50/505403
    [54] MURR L E. Phenomena in Metals and Alloys [M]. Boston: Addison-Wesley Press, 1975.
    [55] TSIVOULAS D,ROBSON J D,SIGLI C,et al. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al-Cu-Li alloys[J]. Acta Materialia,2012,60(13/14):5245-5259.
    [56] TSIVOULAS D,ROBSON J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia,2015,93:73-86. doi: 10.1016/j.actamat.2015.03.057
    [57] TSIVOULAS D,PRANGNELL P B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet[J]. Acta Materialia,2014,77:1-16. doi: 10.1016/j.actamat.2014.05.028
    [58] WU H,WEN S P,HUANG H,et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science & Engineering:A,2017,689:313-322.
    [59] DENG Y L,XU J J,CHEN J Q,et al. Effect of double-step homogenization treatments on the microstructure and mechanical properties of Al-Cu-Li-Zr alloy[J]. Materials Science & Engineering:A,2020,795:139975.
    [60] KNIPLING K E,DUNAND D C,SEIDMAN D N. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375~425 ℃[J]. Acta Materialia,2008,56(1):114-127. doi: 10.1016/j.actamat.2007.09.004
    [61] AARON H B,KOTLER G R. Second phase dissolution[J]. Metallurgical Transactions,1971,2:393-408. doi: 10.1007/BF02663326
    [62] ZHENG X W,LUO P,CHU Z H,et al. Plastic flow behavior and microstructure characteristics of light-weight 2060 Al-Li alloy[J]. Materials Science & Engineering:A,2018,736:465-471.
    [63] LIU Q B,FAN G L,TAN Z Q,et al. Precipitation of Al3Zr by two-step homogenization and its effect on the recrystallization and mechanical property in 2195 Al-Cu-Li alloys[J]. Materials Science & Engineering:A,2021,821:141637.
    [64] NES E,RYUM N,HUNDERI O. On the zener drag[J]. Acta Metallurgica,1985,33(1):11-22. doi: 10.1016/0001-6160(85)90214-7
    [65] ROBSON J D,PRANGNELL P B. Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys[J]. Acta Materialia,2001,49(4):599-613. doi: 10.1016/S1359-6454(00)00351-7
    [66] ROBSON J D. Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model[J]. Materials Science & Engineering:A,2002,338(1):219-229.
    [67] HIGGINSON R,BATE P. Substructure drag effects and recrystallization textures in aluminium[J]. Acta Materialia,1999,47(4):1079-1090. doi: 10.1016/S1359-6454(99)00012-9
    [68] SHE H,SHU D,DONG A P,et al. Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys[J]. Journal of Materials Science & Technology,2019,35(11):2570-2581.
    [69] HUANG K,MARTHINSEN K,ZHAO Q L,et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Progress in Materials Science,2018,92:284-359. doi: 10.1016/j.pmatsci.2017.10.004
    [70] JONAS J J,SELLARS C M,TEGART W J M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews,1969,14:1-24.
    [71] YANG X S,CHAI L J,HUANG W J. EBSD analysis on restoration mechanism of as-extruded AA2099 Al-Li alloy after various thermomechanical processes[J]. Materials Chemistry and Physics,2017,191(15):99-105.
    [72] LIU W Y,ZHAO H,LI D,et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature[J]. Materials Science & Engineering:A,2014,596:176-182.
    [73] JHA J S,TOPPO S P,SINGH R,et al. Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2019,270:216-227. doi: 10.1016/j.jmatprotec.2019.02.030
    [74] JONAS J J,QUELENNEC X,JIANG L,et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia,2009,57(9):2748-2756. doi: 10.1016/j.actamat.2009.02.033
    [75] HUANG K,LOGé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials and Design,2016,111:548-574. doi: 10.1016/j.matdes.2016.09.012
    [76] GALINDO-NAVA E I,RIVERA-Dı´AZ-DEL-CASTILLO P E J. Grain size evolution during discontinuous dynamic recrystallization[J]. Scripta Materialia,2014,72-73:1-4. doi: 10.1016/j.scriptamat.2013.09.020
    [77] CHANG C I,LEE C J,HUANG J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia,2004,51(6):509-514. doi: 10.1016/j.scriptamat.2004.05.043
    [78] GALIYEV A,KAIBYSHEV R,GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49(7):1199-1207. doi: 10.1016/S1359-6454(01)00020-9
    [79] SANJARI M,FARZADFAR S A,JUNG I H,et al. Influence of strain rate on hot deformation behaviour and texture evolution of AZ31B[J]. Materials Science and Technology,2012,28(4):437-447. doi: 10.1179/1743284711Y.0000000080
    [80] BLAZ L, SAKAI T, JONAS J J. Effect of initial grain size on dynamic recrystallization of copper [J]. Metal Science 1983, 17(12): 609-616.
    [81] DEHGHAN-MANSHADI A,BARNETT M R,HODGSON P D. Hot deformation and recrystallization of austenitic stainless steel: part I. dynamic recrystallization[J]. Metallurgical and Materials Transactions A,2008,39(6):1359-1370. doi: 10.1007/s11661-008-9512-7
    [82] HOGG S C,PALMER I G,THOMAS L G,et al. Processing, microstructure and property aspects of a spraycast Al-Mg-Li-Zr alloy[J]. Acta Materialia,2007,55(6):1885-1894. doi: 10.1016/j.actamat.2006.10.057
    [83] NIE J F,SHIN K S,ZENG Z R. Microstructure, deformation, and property of wrought magnesium alloys[J]. Metallurgical and Materials Transaction A,2020,51(12):6045-6109. doi: 10.1007/s11661-020-05974-z
    [84] JONAS J J,TóTH L S. Modelling the texture changes produced by dynamic recrystallization[J]. Scripta Metallurgica et Materialia,1992,27(3):359-363. doi: 10.1016/0956-716X(92)90526-K
    [85] HUANG Y,HUMPHREYS F J. Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy[J]. Acta Materialia,1999,47(7):2259-2268. doi: 10.1016/S1359-6454(99)00062-2
    [86] SITDIKOV O,SAKAI T,MIURA H,et al. Temperature effect on fine-grained structure formation in high-strength Al alloy 7475 during hot severe deformation[J]. Materials Science & Engineering:A,2009,516(1):180-188.
    [87] GOURDET S,MONTHEILLET F. An experimental study of the recrystallization mechanism during hot deformation of aluminium[J]. Materials Science & Engineering:A,2000,283(1):274-288.
    [88] KAIBYSHEV R,SHIPILOVA K,MUSIN F,et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion[J]. Materials Science & Engineering:A,2005,396(1):341-351.
    [89] WHITE S H. The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites[J]. Philosophical Transactions of the Royal Society of London Series A,1976,283(1312):69-86. doi: 10.1098/rsta.1976.0070
    [90] TOTH L S,ESTRIN Y,LAPOVOK R,et al. A model of grain fragmentation based on lattice curvature[J]. Acta Materialia,2010,58(5):1782-1794. doi: 10.1016/j.actamat.2009.11.020
    [91] YANG Y,CHEN Y D,JIANG L H,et al. Study on the characteristics and thermal stability of nanostructures in adiabatic shear band of 2195 Al-Li alloy[J]. Applied Physics A,2015,121(3):1277-1284. doi: 10.1007/s00339-015-9506-4
    [92] SAKAI T,BELYAKOV A,MIURA H. Ultrafine grain formation in ferritic stainless steel during severe plastic deformation[J]. Metallurgical and Materials Transaction A,2008,39(9):2206-2214. doi: 10.1007/s11661-008-9556-8
    [93] MARTORANO M,FORTES M,PADILHA A. The growth of protrusions at the boundary of a recrystallized grain[J]. Acta Materialia,2006,54(10):2769-2776. doi: 10.1016/j.actamat.2006.02.015
    [94] KASSNER M E. Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept[J]. Metallurgical Transactions A,1989,20(10):2182-2185. doi: 10.1007/BF02650307
    [95] PETTERSEN T,HOLMEDAL B,NES E. On the origin of strain softening during deformation of aluminum in torsion to large strains[J]. Metallurgical and Materials Transaction A,2003,34(12):2727-2736. doi: 10.1007/s11661-003-0174-1
    [96] GHOLINIA A,HUMPHREYS F J,PRANGNELL P B. Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling[J]. Acta Materialia,2002,50(18):4461-4476. doi: 10.1016/S1359-6454(02)00253-7
    [97] BLUM W,ZHU Q,MERKEL R,et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083)[J]. Materials Science & Engineering:A,1996,205(1):23-30.
    [98] KONOPLEVA E V,MCQUEEN H J,EVANGELISTA E. Serrated grain boundaries in hot-worked aluminum alloys at high strains[J]. Materials Characterization,1995,34(4):251-264. doi: 10.1016/1044-5803(95)00062-3
    [99] XU C L,HUANG J W,JIANG F Q,et al. Dynamic recrystallization and precipitation behavior of a novel Sc, Zr alloyed Al-Zn-Mg-Cu alloy during hot deformation [J]. Materials Characterization,2022,183:111629. doi: 10.1016/j.matchar.2021.111629
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (60) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return