Volume 38 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Yang HE, Qiuhong YUAN, Lan LUO, Yuhai JING, Yong LIU. Current Study and Novel Ideas on Magnesium Matrix Composites[J]. Journal of Aeronautical Materials, 2018, 38(4): 26-36. doi: 10.11868/j.issn.1005-5053.2018.001013
Citation: Yang HE, Qiuhong YUAN, Lan LUO, Yuhai JING, Yong LIU. Current Study and Novel Ideas on Magnesium Matrix Composites[J]. Journal of Aeronautical Materials, 2018, 38(4): 26-36. 10.11868/j.issn.1005-5053.2018.001013

Current Study and Novel Ideas on Magnesium Matrix Composites

doi: 10.11868/j.issn.1005-5053.2018.001013
  • Received Date: 2018-05-31
  • Rev Recd Date: 2018-06-26
  • Available Online: 2018-07-11
  • Publish Date: 2018-08-01
  • Magnesium alloy is the lightest metal structural material, but its low strength, low plasticity and poor corrosion resistance severely limit its wide application as a light metal material in the engineering field. Magnesium matrix composites are considered to be one of the most advantageous ways to improve the mechanical properties of magnesium alloys and realize their industrial applications because of their high specific strength, specific stiffness, specific modulus and light weight. The article focuses on the current study of magnesium matrix composites enhanced by carbon nanotubes, graphene and SiC. The bottleneck of magnesium matrix composites is analyzed from the aspects of reinforcement dispersion, interface bonding and structural stability. The new ideas for the design of magnesium matrix composites are introduced from the aspects of surface modification of reinforcements, design of matrix alloy, and preparation process of the composite material. Also the development trend and research direction of future magnesium matrix composites are proposed.

     

  • loading
  • [1] MORDIKE B L. Magnesium properties-applications-potential[J]. Materials Science & Engineering: A, 2001, 302(1): 37-45
    [2] SCHUMANN S, FRIEDRICH H E. Current and future use of magnesium in the automobile industry[J]. Materials Science Forum, 2003, 419/420/421/422: 51-56
    [3] NIE J F, FANG X Y. Periodic segregation of solute atoms in fully coherent twin boundaries[J]. Science, 2013, 340(6135): 957-960 doi: 10.1126/science.1229369
    [4] XU W, BIRBILIS N, SHA G, et al. A high-specific-strength and corrosion-resistant magnesium alloy[J]. Nature Materials, 2015, 14(12): 1229 doi: 10.1038/nmat4435
    [5] 吴国华, 陈玉狮,丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22(3): 281-292 doi: 10.3969/j.issn.1674-5825.2016.03.002

    WU G H,CHEN Y S,DING W J,et al. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22(3): 281-292.) doi: 10.3969/j.issn.1674-5825.2016.03.002
    [6] 陈亚光,蔡晓兰,王开军,等. 碳纳米管增强镁基复合材料的研究现状及发展[J]. 材料导报, 2012, 26(增刊 2): 110-112

    CHEN Y G,CAI X L,WANG K J,et al. Research progress in carbon nanotubes reinforced magnesium matrix composites[J]. Materials Review, 2012, 26(Suppl 2): 110-112.)
    [7] OAKLEY R, COCHRANE R F, STEVENS R. Recent developments in magnesium matrix composites[J]. Key Engineering Materials, 1995, 104-107: 387-416 doi: 10.4028/www.scientific.net/KEM.104-107
    [8] 吴江涛, 王云龙. 金属基表面复合材料的制备方法及研究现状[J]. 世界有色金属, 2017(18): 233-233

    WU J T, WANG Y L. Preparation methods and research status of metal base surface composites[J]. World Nonferrous Metals, 2017(18): 233-233.)
    [9] CHEN L, YAO Y. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review[J]. Acta Metallurgica Sinica, 2014, 27(5): 762-774 doi: 10.1007/s40195-014-0161-0
    [10] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58 doi: 10.1038/354056a0
    [11] SHEN K, ZHANG Q, HUANG Z H, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites[J]. Composites Part A:Applied Science & Manufacturing, 2014, 56(1): 44-50
    [12] YU M F, FILES B S, AREPALLI S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J]. Physical Review Letters, 2000, 84(24): 5552 doi: 10.1103/PhysRevLett.84.5552
    [13] HAN G, WANG Z, LIU K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs[J]. Materials Science & Engineering: A, 2015, 628: 350-357
    [14] NAI M H, WEI J, GUPTA M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Materials & Design, 2014, 60(8): 490-495
    [15] YUAN Q H, ZENG X S, WANG Y, et al. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs[J]. Journal of Materials Science & Technology, 2017, 33(5): 452-460
    [16] LIANG J, LI H, QI L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion[J]. Journal of Alloys & Compounds, 2017, 728
    [17] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388 doi: 10.1126/science.1157996
    [18] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907 doi: 10.1021/nl0731872
    [19] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science (New York, N.Y.), 2004, 306(5696): 666-669 doi: 10.1126/science.1102896
    [20] ZHANG L, DUAN Z, ZHU H, et al. Advances in synthesizing copper/graphene composite material[J]. Advanced Manufacturing Processes, 2016, 32(5): 475-479
    [21] XAVIOR M A, KUMAR H G P. Processing and characterization techniques of graphene reinforced metal matrix composites (GRMMC):a review[J]. Materials Today Proceedings, 2017, 4(2): 3334-3341 doi: 10.1016/j.matpr.2017.02.220
    [22] RASHAD M, PAN F, LIU Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method[J]. Journal of Magnesium & Alloys, 2016, 4(4): 270-277
    [23] DU X, DU W B,WANG Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites[J]. Materials Science & Engineering: A, 2018, 711: 633-642
    [24] XIANG S L, GUPTA M, WANG X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J]. Composites Part A: Applied Science & Manufacturing, 2017, 100: 183-193
    [25] RASHAD M, PAN F, LIN D, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets[J]. Materials & Design, 2016, 89: 1242-1250
    [26] RASHAD M, PAN F, ASIF M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(6): 4250-4255
    [27] RASHAD M, PAN F, TANG A, et al. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. Journal of Industrial & Engineering Chemistry, 2014, 23: 243-250
    [28] LI G, XIONG B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys & Compounds, 2017, 697: 31-36
    [29] YUAN Q H, QIU Z Q, ZHOU G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Materials Characterization, 2018, 138: 215-228 doi: 10.1016/j.matchar.2018.02.011
    [30] LUO A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites[J]. Metallurgical & Materials Transactions A, 1995, 26(9): 2445-2455
    [31] GUNTHER R, HARTIG C, BORMANN R. Grain refinement of AZ31 by (SiC) P: Theoretical calculation and experiment[J]. Acta Materialia, 2006, 54(20): 5591-5597 doi: 10.1016/j.actamat.2006.07.035
    [32] 吴清仁, 文璧璇. SiC材料导热系数和热膨胀系数与温度关系[J]. 华南理工大学学报 (自然科学版), 1996, 24(3): 11-15

    WU Q R, WEN B X. Studies on temperature dependence of thermal conductivity and linear expansion for SiC material[J]. Journal of South China University of Technology (Natural Science), 1996, 24(3): 11-15.)
    [33] WANG C H, et al. SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(Suppl 3): 1029-1032
    [34] NIE K B, WANG X J, WU K, et al. Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration[J]. Materials Science & Engineering: A, 2012, 540(4): 123-129
    [35] WANG X J, WANG N Z, WANG L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing[J]. Materials & Design, 2014, 57(5): 638-645
    [36] WANG X, LIU W, HU X, et al. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling[J]. Materials Science & Engineering:A, 2018, 715: 49-61
    [37] CHEN L Y, XU J Q, CHOI H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528(7583): 539 doi: 10.1038/nature16445
    [38] 李传鹏. 纳米TiC增强Mg-8Al-1Sn镁基复合材料的研究[J]. 吉林化工学院学报, 2017, 34(1): 19-22

    LI C P. Study on nano-TiC particulate reinforced Mg-8Al-1Sn magnesium matrix composites[J]. Journal of Jilin Institute of Chemical Technology, 2017, 34(1): 19-22.)
    [39] NGUYEN Q B, GUPTA M, SRIVATSAN T S. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B[J]. Materials Science & Engineering: A, 2009, 500(1/2): 233-237
    [40] NGUYEN Q B, GUPTA M. Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates[J]. Journal of Alloys & Compounds, 2008, 459(1): 244-250
    [41] GHASALI E, ALIZADEH M, NIAZMAND M, et al. Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering[J]. Journal of Alloys & Compounds, 2016, 697: 200-207
    [42] LI H P, LI C, et al. Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure[J]. Journal of Alloys & Compounds, 2018, 746(1): 320-327
    [43] RASHAD M, PAN F, TANG A, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. Journal of Alloys & Compounds, 2014, 603(9): 111-118
    [44] SUN F, SHI C, RHEEK Y, et al. In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites[J]. Journal of Alloys & Compounds, 2013, 551: 496-501
    [45] SHIMIZU Y, MIKI S, SOGA T, et al. Multi-walled carbon nanotube-reinforced magnesium alloy composites[J]. Scripta Materialia, 2008, 58(4): 267-270 doi: 10.1016/j.scriptamat.2007.10.014
    [46] KANG P S, JEONG J C, PARK J G, et al. SiC formation on carbon nanotube surface for improving wettability with aluminum[J]. Composites Science & Technology, 2013, 74(74): 6-13
    [47] 袁秋红, 曾效舒, 刘勇,等. 碳纳米管增强镁基复合材料弹性模量的研究进展[J]. 中国有色金属学报, 2015(1): 86-97

    YUAN Q H, ZENG X S, LIU Y, et al. Research progress of elastic modulus of magnesium matrix composite reinforced by carbon nanotubes[J]. The Chinese Journal of Nonferrous Metals, 2015(1): 86-97.)
    [48] KIM K T, CHA S I, GEMMING T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J]. Small, 2008, 4(11): 1936-1940 doi: 10.1002/smll.v4:11
    [49] YUAN Q H, ZENG X S, LIU Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon, 2016, 96(1): 843-855
    [50] YUAN Q H, ZHOU G H, LIAO L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127
    [51] 刘生发, 王慧源. Sr对AZ91镁合金铸态组织的影响及其细化机制[J]. 稀有金属材料与工程, 2006, 35(6): 970-973 doi: 10.3321/j.issn:1002-185X.2006.06.030

    LIU S F, WANG H Y. The influence of Sr addition on the microstructure of AZ91 magnesium alloy and its refinement mechanism[J]. Rare Metal Materials and Engineering, 2006, 35(6): 970-973.) doi: 10.3321/j.issn:1002-185X.2006.06.030
    [52] 闵学刚, 朱旻, 孙扬善,等. Ca对AZ91显微组织及力学性能的影响[J]. 材料科学与工艺, 2002, 10(1): 93-96 doi: 10.3969/j.issn.1005-0299.2002.01.024

    MIN X G, ZHU M, SUN Y S, et al. Effect of Ca on microstructure and tensile strength of AZ91 alloys[J]. Materials Science & Technology, 2002, 10(1): 93-96.) doi: 10.3969/j.issn.1005-0299.2002.01.024
    [53] 孙明, 吴国华, 戴吉春,等. Zr在镁合金中晶粒细化行为研究进展[J]. 铸造, 2010, 59(3): 255-259

    SUN M, WU G H, DAI J C, et al. Current research status of grain refinement effect of Zr on magnesium alloy[J]. Foundry, 2010, 59(3): 255-259.)
    [54] ZENG X S, LIU Y, HUANG Q Y, et al. Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg-2.0Zn alloy[J]. Materials Science & Engineering: A, 2013, 57(1): 150-154
    [55] RASHAD M, PAN F, ASIF M. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Materials Science & Engineering: A, 2016, 649(4): 263-269
    [56] 袁付庆, 张静, 方超. 稀土元素对镁合金晶粒细化的研究[J]. 热加工工艺, 2012, 41(2): 30-33 doi: 10.3969/j.issn.1001-3814.2012.02.009

    YUAN F Q, ZHANG J, FANG C, et al. Effects of rare earth addition on grain refinement of magnesium alloy[J]. Material & Heat Treatment, 2012, 41(2): 30-33.) doi: 10.3969/j.issn.1001-3814.2012.02.009
    [57] 余琨, 黎文献, 张世军. Ce对镁及镁合金中晶粒的细化机理[J]. 稀有金属材料与工程, 2005, 34(7): 1013-1016 doi: 10.3321/j.issn:1002-185X.2005.07.002

    YU K, LI W X, ZHANG S J. Mechanism of grain refining by adding cerium in Mg and Mg alloys[J]. Rare Metal Materials and Engineering, 2005, 34(7): 1013-1016.) doi: 10.3321/j.issn:1002-185X.2005.07.002
    [58] 王社斌, 张金玲, 祁小叶,等. La对AZ91镁合金铸态组织的影响及其细化机制[J]. 材料工程, 2009(增刊 1): 303-307

    WANG S B, ZHANG J L, QI X Y, et al. The influence of La addition on the microstructure of AZ91 magnesium alloy and its refinement mechanism[J]. Material Engineering, 2009(Suppl 1): 303-307.)
    [59] YUAN Q H, FU D M, ZENG X S, et al. Fabrication of carbon nanotube reinforced AZ91D composite with superior mechanical properties[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1716-1724 doi: 10.1016/S1003-6326(17)60194-8
    [60] YUAN Q H, QIU Z Q, ZHOU G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Materials Characterization, 2018, 138: 215-228 doi: 10.1016/j.matchar.2018.02.011
    [61] 高生祥, 邓丽霞. 热等静压对3D打印新型镁合金组织与性能的影响[J]. 世界科技研究与发展, 2015(6): 643-645

    GAO S X, DENG L X. Effects of hot isostatic pressing on microstructure and properties of 3D printing new magnesium alloys[J]. World Sci-Tech R & D, 2015(6): 643-645.)
    [62] 郑增, 王联凤, 严彪. 3D打印金属材料研究进展[J]. 上海有色金属, 2016, 37(1): 57-60

    ZHENG Z, WANG L F, YAN B. Research progress of metal materials for 3D printing[J]. Shanghai Nonferrous Metals, 2016, 37(1): 57-60.)
    [63] 刘曼朗. 一种AZ91镁合金的注射成形方法[J]. 粉末冶金工业, 2009, 2: 27 doi: 10.3969/j.issn.1006-6543.2009.02.015

    LIU M L. A method for injection molding of magnesium alloy AZ91[J]. Powder Metallurgy Industry, 2009, 2: 27.) doi: 10.3969/j.issn.1006-6543.2009.02.015
    [64] DU F, YU D, DAI L, et al. Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance[J]. Chemistry of Materials, 2011, 23(21): 4810-4816 doi: 10.1021/cm2021214
    [65] 张仁杰. 镁基纳米混杂复合材料高温蠕变及界面力学行为多尺度研究 [D]. 大连: 大连理工大学, 2012.

    ZHANG R J. Multiscale research on high temperature creep and interfacial mechanical behavior of magnesium alloy based hybrid nanocomposites [D]. Dalian: Dalian University of Technology, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (6091) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return